Cristais de água
Gota d'água
H2 é um produto de alguns tipos de metabolismo anaeróbico e é produzido por vários microorganismos, geralmente via reações catalizadas por enzimas contendo ferro ou níquel chamadas hidrogenases. Estas enzimas catalizam a reação redox reversível entre H2 e seus componentes, dois prótons e dois elétrons. A criação de gás hidrogênio ocorre na transferência para reduzir eqüivalentes produzidos durante fermentação do piruvato à água.A separação da água, na qual a água é decomposta em seus componentes prótons, elétrons, e oxigênio, ocorre na fase clara em todos os organismos fotossintéticos. Alguns organismos — incluindo a alga Chlamydomonas reinhardtii e cianobactéria — evoluiram um passo adiante na fase escura na qual prótons e elétrons são reduzidos para formar gás H2 por hidrogenases especializadas no cloroplasto.
Esforços foram feitos para modificar geneticamente as hidrogenases das cianobactérias para sintetizar o gás H2 eficientemente mesmo na presença de oxigênio.[62] Esforços também foram tomados com com algas geneticamente modificadas em um bioreator.[63]
Produção
Laboratório
No laboratório, o gás H2 é normalmente preparado pela reacção de ácidos com metais tais, como o zinco, por meio do aparelho de Kipp.Zn + 2 H+ → Zn2+ + H2
O alumínio também pode produzir H2 após tratamento com bases:
2 Al + 6 H2O + 2 OH- → 2 Al(OH)4- + 3 H2
A electrólise da água é um método simples de produzir hidrogénio. Uma corrente elétrica de baixa voltagem corre através da água, e oxigénio gasoso forma-se no ânodo enquanto que hidrogénio gasoso forma-se no cátodo. Tipicamente, o cátodo é feito de platina ou outro metal inerte (geralmente platina ou grafite) quando se produz hidrogénio para armazenamento. Se, contudo, o gás destina-se a ser queimado no local, é desejável haver oxigénio para assistir à combustão, e então ambos os eléctrodos podem ser feitos de metais inertes (eletrodos de ferro devem ser evitados, uma vez que eles consumiriam oxigênio ao sofrerem oxidação). A eficiência máxima teórica (electricidade usada versus valor energético de hidrogénio produzido) está entre 80 e 94%.[64]
2H2O(aq) → 2H2(g) + O2(g)
Em 2007, descobriu-se que uma liga de alumínio e gálio em forma de pastilhas adicionada a água podia ser usada para gerar hidrogénio. O processo também produz alumina, mas o gálio, que previne a formação de uma película de óxido nas pastilhas, pode ser reutilizado. Isto tem potenciais implicações importantes para a economia baseada no hidrogénio, uma vez que ele pode ser produzido no local e não precisa de ser transportado.
Industrial
O hidrogénio pode ser preparado por meio de vários processos mas, economicamente, o mais importante envolve a remoção de hidrogénio de hidrocarbonetos. Hidrogénio comercial produzido em massa é normalmente produzido pela reformação catalítica de gás natural.[66] A altas temperaturas (700-1100 °C), vapor de água reage com metano para produzir monóxido de carbono e H2.CH4 + H2O → CO + 3 H2
Esta reacção é favorecida a baixas pressões mas é no entanto conduzida a altas pressões (20 atm) uma vez que H2 a altas pressões é o produto melhor comercializado. A mistura produzida é conhecida como "gás de síntese" porque é muitas vezes usado directamente para a produção de metanol e compostos relacionados. Outros hidrocarbonetos além do metano podem ser usados para produzir gás de síntese com proporção de produtos variáveis. Uma das muitas complicações para esta tecnologia altamente optimizada é a formação de carbono:
CH4 → C + 2 H2
Por consequência, a reformação catalítica faz-se tipicamente com excesso de H2O. Hidrogénio adicional pode ser recuperado do vapor usando monóxido de carbono através da reacção de mudança do vapor de água, especialmente com um catalisador de óxido de ferro. Esta reacção é também uma fonte industrial comum de dióxido de carbono:
CO + H2O → CO2 + H2
Outros métodos importantes para a produção de H2 incluindo oxidação parcial de hidrocarbonetos:[67]
2 CH4 + O2 → 2 CO + 4 H2
e a reacção de carvão, que pode servir como prelúdio para a "reacção de mudança" descrito acima
C + H2O → CO + H2
Hidrogénio é por vezes produzido e consumido pelo mesmo processo industrial, sem ser separado. No processo de Haber para a produção de amoníaco, é gerado hidrogénio a partir de gás natural. Electrólise de salmoura para produzir cloro também produz hidrogénio como produto secundário.
Termoquímicos solares
Alguns laboratórios (incluindo França, Alemanha, Grécia, Japão e os EUA) estão a desenvolver métodos termoquímicos para produzir hidrogénio a partir de energia solar e água.Aplicações Grandes quantidades de H2 são necessárias nas indústrias de petróleo e química. A maior aplicação de H2 é para o processamento ("aprimoramento") de combustíveis fósseis, e na produção de amoníaco. Os principais consumidores de H2 em uma fábrica petroquímica incluem hidrodesalquilação, hidrodessulfurização, e hidrocraqueamento. H2 também possui diversos outros usos importantes.
H2 é utilizado como um agente hidrogenizante, particularmente no aumento do nível de saturação de gorduras insaturadas e óleos (encontrado em itens como margarina), e na produção de metanol. É semelhantemente a fonte de hidrogênio na manufatura de ácido clorídrico. H2 também é usado como um agente redutor de minérios metálicos.
Além de seu uso como um reagente, o H2 possui amplas aplicações na física e engenharia. É utilizado como um gás de proteção nos métodos de soldagem como soldagem de hidrogênio atômico.
H2 é usado como cooler de geradores em usinas, por que tem a maior conductividade térmica de qualquer gás. H2 líquido é usado em pesquisas criogênicas, incluindo estudos de supercondutividade.Uma vez que o H2 é mais leve que o ar, tendo um pouco mais do que 1/15 da densidade do ar, foi certa vez vastamente usado como um gás de levantamento em balões e dirigíveis.
Em aplicações mais recentes, o hidrogênio é utilizado puro ou misturado com nitrogênio (às vezes chamado de forming gas) como um gás rastreador para detectar vazamentos. Aplicações podem ser encontradas nas indústrias automotiva, química, de geração de energia, aeroespacial, e de telecomunicações.
Hidrogênio é um aditivo alimentar autorizado (E 949) que permite o teste de vazamento de embalagens, entre outras propriedades antioxidantes.
Os isótopos mais raros do hidrogênio também possuem aplicações específicas para cada um. Deutério (hidrogênio-2) é usado em aplicações de fissão nuclear como um moderador para neutrons lentos, e nas reações de fusão nuclear. Compostos de deutério possuem aplicações em química e biologia nos estudos da reação dos efeitos de isótopos.Trítio (hidrogênio-3), produzido em reatores nucleares, é utilizado na produção de bombas de hidrogênio, como um selo isotópico nas ciências biológicas, e como uma fonte de radiação em pinturas luminosas.
A temperatura de equilíbrio do hidrogênio em ponto triplo é um ponto fixo definido na escala de temperatura ITS-90 à 13.8033 kelvins.
Portador de energia
Hidrogênio não é um recurso de energia, exceto no contexto hipotético das usinas comerciais de fusão nuclear usando deutério ou trítio, uma tecnologia atualmente longe de desenvolvimento.A energia do Sol origina-se da fusão nuclear de hidrogênio, mas este processo é difícil de alcançar controlavelmente na Terra.Hidrogênio elementar de fontes solares, biológicas ou elétricas requerem mais energia para criar do que é obtida ao queimá-lo, então, nestes casos, o hidrogênio funciona como um portador de energia, como uma bateria. Ele pode ser obtido de fontes fósseis (como metano), mas estas fontes são insustentáveisA densidade de energia por unidade volume de ambos hidrogênio líquido e gás de hidrogênio comprimido em qualquer pressão praticável é significantemente menor do que aquela de fontes tradicionais de combustível, apesar da densidade de energia por unidade massa de combustível é mais alta. Todavia, o hidrogênio elementar tem sido amplamente discutido no contexto da energia, como um possível portador de energia futuro em uma grande escala da economia.Por exemplo, CO2 sequestramento seguido de captura e armazenamento de carbono poderia ser conduzido ao ponto da produção de H2 a partir de combustíveis fósseis. O hidrogênio usado no transporte queimaria relativamente limpo, com algumas emissões de NOx, porém sem emissões de carbono.Entretanto, os custos de infraestrutura associados com a conversão total a uma economia de hidrogênio seria substancial.
Indústria de semicondutores
Hidrogênio é empregado para saturar ligações quebradas de silício amorfo e carbono amorfo que ajudam a estabilizar propriedades materiais. É também um potencial doador de elétron em vários materiais óxidos, incluindo ZnO, SnO2, CdO, MgO, ZrO2, HfO2, La2O3, Y2O3, TiO2, SrTiO3, LaAlO3, SiO2, Al2O3, ZrSiO4, HfSiO4, e SrZrO3.Segurança e precauções
O hidrogênio gera vários perigos à segurança humana, de potenciais detonações e incêndios quando misturado com o ar a ser um asfixiante em sua forma pura, livre de oxigênio. Em adição, hidrogênio líquido é um criogênico e apresenta perigos (como congelamento) associados a líquidos muito gelados.O elemento dissolve-se em alguns metais, e, além de vazar, pode ter efeitos adversos neles, como a fragilização por hidrogênio.O vazamento de gás hidrogênio no ar externo pode espontaneamente entrar em combustão. Além disso, o fogo de hidrogênio, enquanto sendo extremamente quente, é quase invisível, e portanto pode levar a queimaduras acidentais.Até mesmo interpretar os dados do hidrogênio (incluindo dados para a segurança) é confundido por diversos fenômenos. Muitas propriedades físicas e químicas do hidrogênio dependem da taxa de para-hidrogênio/orto-hidrogênio (geralmente levam-se dias ou semanas em uma dada temperatura para alcançar a taxa de equilíbrio, pelo qual os resultados usualmente aparecem. os parâmetros de detonação do hidrogênio, como a pressão e temperatura críticas de fudição, dependem muito da geometria do contentor