sábado, 23 de fevereiro de 2013

EVOLUÇÃO QUÍMICA : LUZ - E CALOR



 Cientistas estudam como os elementos químicos mudam com o tempo e com a posição dentro das galáxias. Foco de Projeto Temático no IAG-USP são as estrelas centrais de nebulosas planetárias (Nasa)

Pesquisa mostra evolução química das galáxias

Especiais- 16/11/2011
Por Janaína Simões

Agência FAPESP – Assim como o vento sopra a poeira na Terra, os ventos estelares sopram matéria para fora das estrelas ao longo da vida desses astros. O vento estelar interessa aos astrônomos porque é um fenômeno preliminar do que vai ocorrer no fim da vida da estrela.

Descobrir a composição química desses ventos e qual a influência dessa composição no processo de perda de material estelar é o projeto de doutorado de Graziela Keller, que conta com Bolsa da FAPESP.
O estudo é um dos que integram o Projeto Temático “Nebulosas fotoionizadas, estrelas e evolução química de galáxias”, coordenado por Walter Maciel, professor do Instituto de Astronomia, Geofísica e Ciências Atmosféricas (IAG) da USP, e financiado pela FAPESP.

Maciel está à frente de um grupo que estuda a evolução química das galáxias, ou seja, como os elementos químicos mudam com o tempo e com a posição dentro das galáxias. No Projeto Temático, o foco são as estrelas centrais de nebulosas planetárias.

“As mudanças vão depender da evolução com o tempo. Então, precisamos saber qual é a idade delas. Estamos calculando as variações da composição química, mas precisamos saber a que época da vida da galáxia elas se aplicam”, disse Maciel.

“A composição química atual da Via Láctea é diferente de 5 bilhões ou de 10 bilhões de anos atrás. Precisamos estudar objetos que tenham idades correspondentes a cada uma das fases da vida da galáxia e, para isso, é preciso calcular as idades de cada objeto em estudo”, explicou.

As estrelas centrais de nebulosas planetárias estudadas pelo grupo do IAG são fases muito evoluídas da vida de estrelas como o Sol. “Elas já perderam todo o ‘envelope’, isto é, a nebulosa planetária que estava ao redor delas. O que mostram agora em sua superfície é a composição química que antes ficava dentro da estrela, algo que não conseguimos enxergar”, disse Keller.

Ao observar essas estrelas, os pesquisadores obtêm informações que ajudam a testar e aperfeiçoar modelos de evolução e de estrutura de estrelas já descritos pela ciência.

A perda de material por meio dos ventos estelares se relaciona com a luminosidade das estrelas e, basicamente, é a decomposição da luz, por meio de espectroscopia, que conta do que uma estrela é feita. Com isso, cientistas calculam a metalicidade, ou seja, quais os elementos químicos a formam e em que quantidade. Esses dados podem ser usados para estimar a idade das estrelas.

Uma hipótese científica para explicar os ventos é a pressão de radiação: a luz gera uma pressão, empurrando o material das camadas mais externas da estrela. “Dependendo do elemento químico que estiver naquele material, a luz vai empurrar menos ou mais vento. Se soubermos quais são os elementos químicos presentes, podemos dizer se um modelo é capaz de gerar ou não a perda de massa que a gente observa”, disse Keller.

Para estudar os ventos, ela utilizou códigos de atmosferas estelares desenvolvidos por outros cientistas durante vários anos de estudo. Passou um ano na Universidade Johns Hopkins, nos Estados Unidos, para aprender a usar um programa computacional chamado CMFGEN, que a ajudou a fazer cálculos e determinar as características físicas de estrelas centrais de nebulosas planetárias.

“Esses códigos simulam o que estamos observando. Damos todas as características da estrela e o código nos devolve o espectro da estrela, ou seja, a divisão da luz nas diversas cores”, explicou Keller.
Comparando os espectros devolvidos pelos códigos com o espectro observado, é possível determinar a massa da estrela, sua gravidade superficial, temperatura, luminosidade, taxa de perda de massa, a velocidade do vento e a composição química. “Se pudermos saber quais são os elementos químicos presentes na superfície dessas estrelas, poderemos determinar quais mecanismos de perda de massa são capazes de acelerar o que a gente observa”, disse.

Ainda dentro de seu doutorado, Keller estudou as instabilidades causadas pelo mecanismo de aceleração do vento. A força que empurra o vento é proporcional à aceleração desse vento. Quanto mais rápido o vento, maior a força que o empurra e vice-versa.

Esse processo aumenta a velocidade até criar choques no vento, o que provoca as chamadas inomogeneidades – característica de um corpo que não tem as mesmas propriedades em todos os pontos. No caso do vento, a movimentação gera regiões mais rarefeitas intercaladas com regiões mais densas. Essas inomogeneidades impactam no que se observa da estrela.

Para estudar esse aspecto dos ventos estelares, Keller utilizou outro tipo de código computacional, o H-DUST, desenvolvido pelo pesquisador Alex Carciofi, também do IAG-USP. Ele serve para simular o que ocorre com a luz da estrela quando ela passa pela atmosfera da estrela, mas é tridimensional.
Esses dados poderão ser comparados com os gerados pelo código CMFGEN usado por ela nos Estados Unidos, mostrando se o que ela adotou como inomogeneidade dos ventos na primeira parte de seu doutorado está próximo da previsão mostrada pelo sistema tridimensional do código de Carciofi.

Idade das estrelas
O Projeto Temático coordenado por Maciel desenvolveu também dois novos modelos para calcular a idade de estrelas localizadas no centro de nebulosas. A equipe já havia desenvolvido três métodos, cujos resultados foram publicados no início de 2010 na revista Astronomy and Astrophysics.

Inicialmente, eles analisaram uma amostra de 230 nebulosas entre as cerca de 2 mil nebulosas planetárias existentes na Via Láctea. Agora, no estudo “Kinematic Ages of The Central Stars of Planetary Nebulae”, publicado na edição impressa de outubro da Revista Mexicana de Astronomía y Astrofísica, o grupo apresenta os resultados da aplicação dos métodos cinemáticos que desenvolveram para calcular a idade das estrelas.

“Pelo método cinemático, podemos calcular as idades com base em seus movimentos. As estrelas jovens em nossa galáxia giram em torno do centro da galáxia, mas não se movem muito na direção perpendicular. Com as estrelas mais velhas é o contrário: a velocidade maior se dá na direção perpendicular e menor na direção da rotação. Além disso, as velocidades das estrelas variam com o tempo de uma maneira conhecida”, explicou Maciel.

Os pesquisadores calcularam as idades para duas amostras, uma com 230 estrelas, montada pela própria equipe do IAG-USP, e outra de 900 estrelas de um catálogo internacional. Além de desenvolver os novos métodos, o objetivo dessa fase do estudo foi ampliar a amostra em relação ao trabalho já feito para comprovar a robustez do método desenvolvido pelos pesquisadores.

Assim como no primeiro estudo publicado em 2010, nesse segundo, usando amostras e métodos diferentes, os cientistas chegaram à conclusão de que a maior parte das estrelas centrais das nebulosas planetárias estudadas têm idades abaixo de 3 bilhões de anos. 

O Sol tem cerca de 4,5 bilhões de anos. 
 
Leia reportagem na revista Pesquisa FAPESP sobre conexão entre a evolução química da Via-Láctea e a formação de planetas terrestres. 

Evolução química das galáxias é alvo de estudo

Além de hidrogênio e hélio, no Universo
 há um conjunto de outros elementos químicos, 
como oxigênio, carbono, ferro e lítio,
 chamados genericamente de “metais” pelos astrofísicos 

 Pesquisadores do IAG da USP iniciam projeto para estudar os tipos e a quantidade de metais presentes nos gases que envolvem grupos de galáxias

Agência FAPESP – Além de hidrogênio e hélio, no Universo há um conjunto de outros elementos químicos, como oxigênio, carbono, ferro e lítio, chamados genericamente de “metais” pelos astrofísicos.
Ao estudar o tipo e a quantidade (metalicidade) desses elementos presentes no gás que envolve as galáxias, por exemplo, é possível estimar a evolução delas.

Um grupo de pesquisadores do Instituto de Astronomia, Geofísica e Ciências Atmosféricas (IAG) da Universidade de São Paulo (USP) iniciou um projeto de pesquisa, realizado com apoio da FAPESP, para estudar a metalicidade de aglomerados de galáxias (união de diversas galáxias).

“Ao compreender melhor os processos de produção e transferência de elementos químicos que ocorrem nesses objetos, que são os de mais larga escala em equilíbrio no Universo, será possível preencher uma peça de um grande quebra-cabeça que é entender a evolução química do espaço como um todo”, disse Gastão Cesar Bierrenbach Lima Neto, professor do IAG e coordenador do projeto, à Agência FAPESP.

De acordo com o pesquisador, à exceção do hidrogênio, hélio e lítio, todos os demais metais presentes no Universo são produzidos pelas estrelas (em um processo denominado nucleossíntese estelar), que, por sua vez, se formam em galáxias.

À medida que as estrelas evoluem, elas ejetam esses metais no meio galáctico interestelar – onde o material é reciclado e, eventualmente, pode dar origem a novas gerações de estrelas.
Como esses processos são altamente complexos, é preciso fazer simulações numéricas com computação de alto desempenho a fim de estudar a metalicidade das galáxias.

“Nós precisamos de computadores muito grandes,
 além de códigos complexos e o envolvimento
 de um grupo de pesquisadores”, 
explicou Lima Neto.
Além disso, são necessárias observações por raios X, como as que Lima Neto e a pesquisadora Tatiana Ferraz Laganá farão durante a pesquisa. Laganá realiza um projeto de pós-doutorado no Núcleo de Astrofísica Teórica (NAT) da Universidade Cruzeiro do Sul (Unicsul), no âmbito do programa Jovens Pesquisadores, da FAPESP.

“Os raios X nos mostram
 a composição do gás situado entre as galáxias,
 que é enriquecido por elas”, explicou Lima Neto.
Novo cluster de computadores
A fim de realizar suas simulações numéricas, os pesquisadores do IAG utilizam um dos maiores e mais potentes clusters (aglomerados de computadores) voltado exclusivamente para pesquisas astronômicas, instalado no início de 2012 no Departamento de Astronomia.


Avaliado em mais de US$ 1 milhão, o equipamento foi adquirido com apoio da FAPESP por meio do Programa Equipamentos Multiusuários, no âmbito de um projeto realizado pelo IAG em parceria com o NAT, da Unicsul.

Composto por três torres, do tamanho de geladeiras domésticas que juntas pesam três toneladas, o conjunto de computadores possui 2,3 mil núcleos de processamento.

O sistema possibilitou um aumento de 60 vezes na escala de processamento do Departamento de Astronomia da USP. O cluster utilizado anteriormente pela instituição possuía 40 núcleos de processamento.
“O novo cluster de computadores agregou um poder de cálculo brutal às nossas simulações numéricas”, avaliou Lima Neto. 

“Simulações 
que antes levariam meses, 
agora nós fazemos em alguns dias”, 
comparou.

O pesquisador Rubens Eduardo Garcia Machado, que realiza pós-doutorado no IAG com Bolsa da FAPESP, começou a rodar as primeiras simulações numéricas de colisões de aglomerados de galáxias, que também provocam mudanças em suas composições químicas.

Colaboração sul-americana
Por meio de colaborações com colegas de outros países da América do Sul, os pesquisadores do IAG também pretendem adaptar códigos de simulações numéricas de evolução química.


Nos últimos anos, os pesquisadores brasileiros iniciaram conversas com colegas do Instituto de Astronomia e Física do Espaço (Iafe) do Conselho Nacional de Investigações Científicas e Técnicas (Conicet) e da Universidade de Buenos Aires (UBA) da Argentina para começar uma colaboração formal de pesquisa.

No início de fevereiro, uma das pesquisadoras do Iafe, a astrofísica argentina Patricia Tissera, esteve no Brasil, por meio de um Auxílio Pesquisador Visitante, concedido pela FAPESP, para discutir com os pesquisadores brasileiros sobre a colaboração.

Na ocasião, Tissera deu uma palestra na Conferência USP sobre Cosmologia, Estruturas de Larga Escala e Primeiros Objetos , realizada nos dias 4 a 7 de fevereiro, em São Paulo, sobre como os padrões químicos e dinâmicos representam uma rota de pesquisa desafiadora para entender a formação das galáxias.

A pesquisadora desenvolveu um código de simulação numérica de evolução química e formação estelar, além de outros processos astrofísicos que os pesquisadores brasileiros pretendem começar a estudar.
“Nós temos interesse em colaborar com colegas de países como a Argentina e o Chile há bastante tempo”, afirmou Lima Neto.

“A ideia é montarmos uma rede de pesquisa 
sobre astronomia extragaláctica no Cone Sul,
a exemplo das existentes nos Estados Unidos e Europa”,
 contou.
Fontes:
site da FAPESP
 Agência FAPESP-© NASA/JPL
ELTON ALISSON | Edição Online 17:55 22 de fevereiro de 2013
 

Nenhum comentário:

Postar um comentário

Quer comentar,o espaço é todo seu!