domingo, 17 de outubro de 2010

VIA LÁCTEA

Via Láctea

COBE's View of the Milky Way - GPN-2002-000111.jpg Milky Way IR Spitzer.jpg
Dados observacionais (J2000)
Idade 13 800 000 000 anos
Tipo SBb espiral barrada
N° de estrelas 200 000 000 000
Ascensão reta -
Declinação -
Distância (parsec)
Constelação Sagitário
Características físicas
Dimensões 78500 al, 24000 pc
Raio 50.000 al, 15,33 kpc
Magnitude absoluta -20,9
Massa 1012 massas solares
Outras denominações
Outros nomes Galáxia da Terra, Galáxia local, Galáxia Via Láctea

A Via Láctea é a galáxia onde está localizado o Sistema Solar. É uma estrutura constituída por cerca de duzentos bilhões[1] de estrelas (algumas estimativas colocam esse número no dobro, em torno de quatrocentos bilhões[2]) e tem uma massa de cerca de um trilhão e 750 bilhões de massas solares. Sua idade está calculada entre 13 e 13,8 bilhões de anos, embora alguns autores afirmem estar na faixa de quatorze bilhões de anos.

Estrutura

São seis partes que constituem a Via Láctea: núcleo, bulbo central, disco, os braços espirais, o componente esférico e o halo.

Núcleo

O núcleo está localizado no centro do sistema, tem a forma de uma esfera achatada e é igualmente constituído por estrelas, mas de idade mais avançada (chamada de população 2), apresentando por isso uma cor mais avermelhada do que o disco. Tem um diâmetro calculado em cerca de cem mil anos-luz e uma altura de trinta mil anos-luz, sendo uma fonte de intensa radiação eletromagnética, provavelmente devido à existência de um buraco-negro no seu centro. Este é envolto por um disco de gás a alta temperatura e por partículas de poeira interestelar que o ocultam, absorvendo a luz visível e a radiação ultravioleta. Porém, na faixa de radiofrequência é detectável com certa facilidade.

O buraco negro central recebeu o nome de Sagittarius A, sua massa foi estimada em aproximadamente quatro milhões de vezes a massa do Sol. Ao seu redor parece haver indicação da presença de nuvens de gás em rápido movimento e ionizadas. Esta é devida a fortes emissões de raios X e radiação infravermelha provenientes do núcleo galáctico.

Bulbo central

O bulbo central galáctico é em torno do núcleo galáctico, sua forma é esférica e constituído principalmente por estrelas do tipo população 2 (estrelas velhas). Esta região da galáxia é rica em elementos pesados. Também estão presentes aglomerados globulares de estrelas semelhantes (de mesma composição), e suas órbitas são aproximadamente radiais ao redor do núcleo.

Disco

O disco é a parte mais visível da galáxia, e é nesta estrutura sobre a qual repousam os braços da Via Láctea; sua espessura equivale a um quinto de seu diâmetro. Constituído pela população mais jovem de estrelas (chamada de população 1) de cor azulada, por nuvens de poeira, gás e por aglomerados estelares. As estrelas do disco, têm um movimento de translação em volta do núcleo. Todas as estrelas que observamos no céu nocturno, estão localizadas no disco galáctico.

Braços espirais


Estrutura observada junto as extensões extrapoladas dos braços espirais da Via-Láctea.
Os 4 maiores braços espirais da galáxia junto com o braço menor de Órion estão nomeados como se segue, de acordo com a imagem à direita:

Cor Braço(s)
Ciano 3kpc e Perseus
Violeta Norma (Junto com a sua extensão externa recentemente descoberta)
Verde Scutum-Crux
Rosa Carina-Sagittarius
Existem pelo menos 2 braços menores ou ramificações que incluem:
Laranja Órion (que contém o Sistema Solar e o Sol)
Fora dos braços principais está o anel externo ou anel de Monoceros, um anel de estrelas ao redor da Via-Láctea que foi proposto pelos astrónomos Brian Yanny e Heidi Jo Newberg. Esse anel consiste de estrelas, poeira e gás capturados de outras galáxias há bilhões de anos atrás.


Concepção artística da estrutura espiral da Via-Láctea com seus dois braços principais e uma barra.[3]
Até 1953 não se conhecia a existência de braços espirais na Via Láctea. A visualização da estrutura espiral era ocultada pela poeira interestelar e dificultada por ser efectuada do interior da própria galáxia. Até 2008 acreditava-se que possuía 4 braços mas imagens reveladas pelo telescópio Spitzer vieram refazer uma teoria de décadas como acreditavam todos os astrónomos. Robert Benjamin da Universidade de Wisconsin-Whitewater sugeriu que a Via-Láctea possui apenas dois braços estelares principais: o braço Perseus e o braço Scutum-Centaurus

Os demais braços foram reclassificados como braços menores ou ramificações.[3]
Esses dois braços principais, Centaurus e Perseus, contêm ambos uma enorme concentração de estrelas jovens e brilhantes. Desta forma, a Via-Láctea é classificada como sendo uma galáxia espiral e seus braços estão em movimento rotatório em torno do núcleo à semelhança de um grande cata-vento. É no braço menor de Órion que está localizado o nosso sistema solar. O Sol efetua uma rotação completa a cada duzentos milhões de anos e está localizado a cerca de 27 mil anos-luz do centro galáctico.

Componente esférico

A forma de disco da Via Láctea não é compacta, o centro e o bulbo central configuram uma região chamada de componente esférico. As estrelas compreendidas nesta são do tipo 1 e tipo 2, estando distribuídas de forma mais ou menos uniforme. Esta região é envolta pelo Halo e somente identificável de forma indireta.

Halo

O halo tem uma forma esférica e é constituída por partículas ultraexcitadas a alta temperatura, anãs vermelhas, anãs brancas e por aglomerados globulares, que estão em órbita em torno do centro de massa galáctica. O halo, como tal, não é observável opticamente. As estrelas que formam os aglomerados globulares (de forma esférica) são as mais antigas da galáxia. Por ser o componente menos conhecido da Via Láctea, supõe-se que sua estrutura seja gigantesca. 

O Halo envolve toda a estrutura visível da galáxia. Sua existência é demonstrada pelos efeitos provocados na curva de rotação externa da galáxia. É sabido, porém, que o halo se estende para além de cem mil anos-luz do centro galáctico. A sua massa gira entre cinco ou dez vezes maior do que a massa restante da galáxia. Sua forma, seus componentes e seus limites no espaço intergaláctico são desconhecidos até o início do século XXI, e muitas das afirmações acerca do halo são especulações científicas.

Dificuldades na sua observação

A observação e o estudo da Via Láctea é dificultado pelo fato de o plano galáctico estar obscurecido por nuvens de poeira e gás (atómico - H e molecular - HII) que absorvem a luz visível. Assim, muito do que sabemos da estrutura geral da nossa galáxia é inferido a partir da observação de outras galáxias e por observação através de observatórios capazes de medições em comprimentos de onda não bloqueados pelas poeiras (nomeadamente infravermelho, Raios X e SHF, principalmente).

A rotação galáctica

A Via Láctea descreve como um todo um movimento de rotação. Seus componentes não se deslocam à mesma velocidade. As estrelas que estão a uma distância maior do centro, movem-se a velocidades mais baixas do que as mais próximas.

O Sol descreve uma órbita que pode ser considerada circular. Sua velocidade relativa ao Universo gira em torno de 225 km/s, seu período de revolução é de aproximadamente de duzentos milhões de anos.

Envolvente

A Via Láctea está inserida no chamado Grupo Local de galáxias, que é constituído por cerca de trinta outras galáxias. As principais são a Via Láctea (a mais maciça) e a galáxia de Andrômeda (a de maior dimensão) separadas entre si em cerca de 2,6 milhões de anos-luz. Estas duas galáxias espirais gigantes estão em órbita de um centro de massa comum. As restantes galáxias do Grupo Local são de pequenas dimensões e forma irregular, sendo que algumas são satélites quer da nossa galáxia (como as famosas nuvens de Magalhães) quer da de Andrômeda e a sua cor azul e umas manchas pretas arrozadas.


Fotografia panorâmica de 360° de toda a galáxia, vista do Sistema Solar.

Histórico de pesquisas

Antes do século XX

O filósofo grego Demócrito (450 a.C.370 a.C.) foi o primeiro a propor que a Via Láctea era composta por estrelas distantes. A prova disso veio em 1610 quando Galileu Galilei usou um telescópio para a estudar e descobriu que era composta por um número incalculável de estrelas. Uma obra de Kant publicada em 1755 sugere (correctamente) que a Via Láctea era uma massa de muitíssimas estrelas em rotação, seguradas pela força da gravidade tal como o sistema solar mas numa escala gigantesca. Kant conjecturou também que algumas das nebulosas visíveis durante a noite deviam ser galáxias tal como a nossa.

A primeira tentativa de descrever forma da Via Láctea e o posicionamento do sol foi feita por William Herschel em 1785 pela cuidadosa contagem do número de estrelas nas diferentes regiões do céu. Herschel construiu um diagrama com a forma da galáxia com o sistema solar próximo do centro.
Em 1845, Lord Rosse construiu um novo telescópio e conseguiu distinguir as diferenças entre uma nebulosa elíptica e uma em forma de espiral.

Depois do século XX


Fragmento da Via Láctea (Foto: Observatório de Paranal).

Harlow Shapley

Até o início do século XX, acreditava-se que a Via Láctea fosse um sistema relativamente pequeno, com o Sol próximo de seu centro. Mediante a análise da distribuição espacial dos aglomerados globulares (esféricos ou elipsóides) na galáxia, Harlow Shapley realizou em 1917 o primeiro cálculo seguro das reais dimensões da Via Láctea. Shapley descobriu que o Sol se situava a trinta mil anos-luz do centro galáctico e que estava mais próximo das bordas. Calculou um diâmetro de cem mil anos-luz para a Via Láctea, e que havia corpos aparentemente em órbita desta, que em futuro próximo Edwin Hubble provou serem outras galáxias.

Edwin Hubble

Foi a partir do trabalho realizado pelo astrónomo norte-americano Edwin Hubble em 1924 que houve a determinação aproximada da extensão de nosso universo. Hubble provou pela teoria conhecida atualmente como a constante de Hubble que existem outras galáxias, e que estas se afastam de nós. Ao medir a razão (velocidade) a que as galáxias se afastavam (indicando assim que se encontravam a uma grande distância), permitiu demonstrar que afinal essas estruturas se encontravam fora da Via Láctea e eram "ilhas" constituídas por estrelas.

Walter Baade

O astrônomo Walter Baade observou pela primeira vez na década de 1940, durante suas pesquisas sobre a galáxia de Andrômeda, a teoria da nucleossíntese, que estabelece que a abundância de elementos pesados em gerações sucessivas de estrelas deve aumentar com o tempo, e que o processo de formação de estrelas terminou no halo há muito tempo, mas continua até os dias atuais no disco de Andrômeda. Através deste estudo, descobriu haver um paralelo também com a formação e evolução da Via Láctea pela análise da correlação existente entre a localização espacial de uma estrela no sistema galáctico e sua abundância em elementos pesados.

Baade e outros astrônomos concluíram então que as estrelas encontradas no disco da Via Láctea são tipo população I (estrelas jovens e pouco abundantes em elementos pesados), e que as do halo classificam-se principalmente como população II (estrelas velhas e abundantes em elementos pesados), enquanto as do núcleo são uma mistura homogênea dos dois tipos.

A Via Láctea

 O Gato dourado

A Via Láctea é uma grande galáxia espiral, e o Sol encontra-se num dos seus braços espirais. Também a Galáxia de Andrómeda é uma galáxia espiral. As duas maiores galáxias-satélite da Via Láctea, por seu lado (a Grande Nuvem de Magalhães e a Pequena Nuvem de Magalhães), eram classificadas como galáxias irregulares, mas uma observação mais minuciosa detectou estruturas de galáxias em barra, e desde então elas são classificadas como "SBm", um quarto tipo de galáxias em barra. No meio de nossa e de muitas outras galáxias, há provavelmente um poderoso buraco negro com mais ou menos quatro milhões de massas solares. Isso é o que mantem a galáxia uniforme. 

                                        O gato azul (trocar)
Não somos sugados pelo buraco negro por causa da rotação da galáxia, assim como não somos sugados pelo Sol por causa da rotação da Terra. A rotação do Sistema Solar ao redor do núcleo da Via Láctea tem um período de duzentos milhões de anos.

Nebulosa planetária NGC 3132


Crédito: NASA & The Hubble Heritage Team (STScI/AURA).
Telescópio: Hubble Space Telescope (NASA/ESA).
Instrumento: Wide Field Planetary Camera 2 (WFPC2).
 
Esta imagem da nebulosa planetária NGC 3132, obtida pelo Hubble, foi colorida por forma a traduzir as diferentes temperaturas do gás em expansão em torno da estrela central. A azul, temos o gás mais quente, confinado à região mais interna da nebulosa, enquanto que, a vermelho, temos o gás mais frio, na orla externa. Um conjunto de filamentos aparece bem patente na imagem, em particular, um grande filamento que parece atravessar a nebulosa. 
Estes filamentos são constituídos por poeira que se condensou a partir dos gases em expansão. As partículas de poeira são ricas em elementos como o carbono. NGC 3132 tem um diâmetro de cerca de 0,5 anos-luz e encontra-se a uma distância de aproximadamente 2000 anos-luz. É uma das nebulosas planetárias mais próximas do nosso Sistema Solar.
Os gases que se encontram em expansão afastam-se da estrela central a uma velocidade de cerca de 15 km/s. No centro da nebulosa podemos ver 2 estrelas, uma brilhante e uma mais fraca. A estrela que produziu a nebulosa planetária é, na verdade, a mais fraca das duas.

Fonte:
Wikipedia

CONSTELAÇÃO DO ESCULTOR

 

Galáxia NGC 300



Crédito: European Southern Observatory (ESO).
Telescópio: MPG/ESO 2.2m.

Localizada a cerca de 7 milhões de anos-luz de distância, a galáxia espiral NGC 300 é um magnífico exemplo de uma galáxia semelhante à Via Láctea. Situa-se na direcção da constelação do Escultor e faz parte do grupo de galáxias com o mesmo nome. Dada a sua relativa proximidade, NGC 300 ocupa uma grande área no céu, quase tanto quanto a área ocupada pela Lua Cheia. 
É igualmente bastante brilhante, podendo ser vista com a ajuda de um mero par de binóculos. Esta imagem foi obtida com o Wide Field Imager (WFI) instalado no telescópio do ESO de 2.2m no Observatório de La Silla. Esta câmara avançada, com 67 milhões de pixeis e o seu grande campo de visão, é um instrumento extremamente apropriado para mostrar a galáxia NGC 300 em toda a sua extensão, bem como a sua imediata vizinhança no céu povoada por milhares de outras galáxias
Fonte:
Portal do Astrônomo - Portugal

sábado, 16 de outubro de 2010

BÚSSOLA CASEIRA - Como fazer


Construção de uma bússola caseira


Figura 1 - Detalhe da bússola caseira. Figura 2 - Comparação com uma bússola comum.
Construir uma bússola é muito simples. Basta imantar uma agulha de costura e depois colocá-la para flutuar numa vasilha com água. Leia as instruções abaixo, que explicam como fiz a minha:

  1. Pegue uma bacia de plástico e encha-a com água.
  2. Esfregue um ímã numa agulha de aço, sempre em um mesmo sentido, para direcionar seu magnetismo.
  3. Faça duas fendas opostas na parte lateral da tampinha plástica de uma garrafa de refrigerante.
  4. Encaixe a agulha imantada na tampinha da garrafa de modo firme.
  5. Coloque o dispositivo para flutuar na bacia com água e sua bússola estará pronta.

Ao flutuar livremente na água, com pouco atrito, a agulha cederá facilmente à influência do campo magnético da Terra e se alinhará com ele. Quando a agulha parar de balançar, ela ficará numa posição paralela à de uma bússola comum. Para determinar qual extremidade é a Norte e qual é a Sul, utilize a orientação pelo nascer (ou pôr) do Sol.


É importante lembrar que uma bússola não aponta para os pólos geográficos da Terra. Para determinar a direção dos pólos verdadeiros (geográficos) é preciso conhecer o erro que a bússola apresenta no local onde você a utiliza, que varia com o tempo. Em Uberlândia, essa diferença é de cerca de 19 graus (em 2007). Para corrigir a bússola, você deve ficar de frente para a posição Norte apontada por ela e girar seu corpo 19 graus para a direita (no sentido do Leste). Após esse procedimento, você estará de frente para o Pólo Norte (o verdadeiro), em alinhamento com a rosa-dos-ventos local. 

Procure saber qual é o erro atual da bússola em sua cidade, chamado de deflexão magnética local. Você precisará dele para aplicar a correção. 

 Fonte:
ASTRONOMIA

 http://www.silvestre.eng.br/astronomia/astrodicas/bussola/

sexta-feira, 15 de outubro de 2010

GRANDE NUVEM DE MAGALHÃES

 

 N11B - maternidade de estrelas


Crédito: Hubble Heritage Team (AURA / STScI), Y.-H. Chu (UIUC), ESA, NASA.
Telescóp - Hubble Space Telescope (HST).- 2010-11-03

N11 é umas das regiões de formação de estrelas mais em evidência na Grande Nuvem de Magalhães, uma das galáxias vizinhas da nossa Via Láctea. Na imagem vê-se parte desta região, designada por N11B, onde ventos estelares, provenientes de estrelas maciças, esculpem as muitas nuvens de gás e poeira existentes na região.

O estudo desta região permitiu concluir que existem três gerações sucessivas de estrelas nesta zona. Na parte de cima, à direita da imagem, podem-se ver glóbulos de poeira, casulos de onde novas estrelas estão a emergir. Zonas brilhantes contrastam com zonas extremamente escuras, criando um misto de luz e escuridão próprio destes viveiros de novas estrelas. 

'Bola de árvore de Natal' no espaço

Bolha de gás se expande a quase 18 milhões de km/h

  ampliar
A explosão de uma estrela provoca o espetáculo 
SAIBA MAIS
 
O Telescópio Espacial Hubble, da Agência Espacial Norte-Americana (NASA), capturou a imagem de uma fina esfera vagando pelo espaço – segundo a agência, o objeto parece um enfeite de Natal.

Essa bolha de gás, que tem cerca de 217 trilhões de km de diâmetro, formou-se após a explosão de uma estrela na Grande Nuvem de Magalhães, pequena galáxia que fica próxima à Via Láctea, onde a Terra está localizada.

Essa bola está se expandindo a 18 milhões de km/h. A imagem divulgada é uma combinação entre fotos feitas pelo telescópio em 2006 e em 2010.

http://www.ufo.com.br/noticias/bola-de-arvore-de-natal-no-espaco

Duplo enxame globular NGC 1850


Crédito: European Southern Observatory (ESO).
Telescópio: Very Large Telescope - Antu (Paranal Observatory, ESO).
Instrumento: FOcal Reducer/low dispersion Spectrograph 1 (FORS1).
 
NGC 1850 é um duplo enxame de estrelas na Grande Nuvem de Magalhães, uma galáxia satélite da Via Láctea a 168 000 anos-luz. Este aglomerado de estrelas é representativo de uma classe de objectos que não tem contrapartida na nossa Galáxia.
 
A peculiariedade de NGC 1850 reside em ter uma natureza dupla: é composta por um enxame globular principal, com cerca de 40 milhões de anos, e um segundo aglomerado, também globular, menor, com apenas 4 milhões de anos e que é essencialmente composto por estrelas extremamente quentes.

Estima-se que cerca de 1000 estrelas no aglomerado principal tenham explodido como supernovas nos últimos 20 milhões de anos.
Uma teoria propõe que a formação do enxame mais jovem terá sido provocada pelo efeito das supernovas nas nuvens de gás residual à volta do enxame principal. Na imagem, o hidrogénio brilha a vermelho, mostrando que ainda resta muito gás na região.

Embora parte deste possa ainda pertencer à nuvem mãe, donde nasceram os dois enxames, a estrutura do gás, com a presença de filamentos, favorece a teoria das supernovas.

Nebulosa de emissão N 44

2011-05-07

Crédito: European Southern Observatory (ESO).
Telescópio: MPG/ESO 2,2m (La Silla Observatory, ESO).

Instrumento: Wide Field Imager (WFI).
N44 é uma região complexa e já muito estudada na Grande Nuvem de Magalhães. Nesta região, predomina uma nebulosa em forma de anel, associada a um agregado estelar com estrelas muito luminosas. Esta nebulosa emite raios-X, um indício de que várias estrelas de massa elevada terão explodido como supernovas nos últimos poucos milhões de anos. 
 
A morfologia desta nebulosa parece ser bem explicada pela acção combinada de ventos estelares muito rápidos e remanescentes de supernovas, bem como formação estelar sequencial. Contudo, a origem e interpretação dos componentes individuais deste ambiente complexo são ainda enigmáticas. Por exemplo, os movimentos do gás ionizado em N 44 são estranhos: não é ainda claro se se trata de movimentos internos do gás nas nuvens de gás e poeira aí existentes, ou se se trata de várias camadas da nebulosa que possuem velocidades diferentes.
 
Observações da distribuição dos diferentes componentes desta região (estrelas, nuvens de gás e poeira, gás ionizado) ajudarão a perceber melhor este ambiente tão rico, mas também tão complexo em N 44.

Nebulosa N44C vista pelo VLT



Crédito: European Southern Observatory (ESO).
Telescópio: Very Large Telescope (VLT).- 2010-10-27

Esta imagem, obtida com o Very Large Telescope do ESO, mostra a peculiar nebulosa N44C situada na Grande Nuvem de Magalhães. Na imagem pode-se ver uma nuvem de hélio ionizado (HeII) perto das duas estrelas centrais.

Esta nuvem de gás é bastante diferente da nebulosa normal, formada por hidrogénio ionizado (HII) (a vermelho) e oxigénio duplamente ionizado (a verde). A região central desta nebulosa cobre assim, como um véu cósmico, as estrelas centrais. 

Esta é uma nebulosa algo misteriosa dado que nenhuma das estrelas que se conhece pode ser responsável pelo nível de excitação do gás nesta região. 

N44F - Bolha estelar

2011-04-07

Crédito: NASA, ESA, Y. Nazé (University of Liége, Belgium) & Y.-H. Chu (University of Illinois, USA).
Telescópio: Hubble Space Telescope (HST).

Este objecto cósmico, designado por N44F, é uma bolha de gás formada a partir de ventos fortíssimos gerados por uma estrela muito quente existente no seu interior.
Em comparação com o nosso Sol, esta estrela está a emitir, por segundo, 100 milhões de vezes mais massa. Esta tempestade cósmica atinge velocidades da ordem de 7 milhões de kilómetros por hora. 
Os ventos gerados colidem com o gás envolvente, formando a bolha visível na imagem. N44F situa-se na nossa galáxia vizinha Grande Nuvem de Magalhães, a cerca de 160000 anos-luz de distância.

Remanescente de supernova DEM L71

2003-04-03

Crédito: NASA/CXC/Rutgers/J.Hughes et al.
Telescópio: Chandra X-ray Observatory (NASA).
Instrumento: Advanced X-ray astrophysics facility CCD Imaging Spectrometer (ACIS).
 
DEM L71 é um remanescente de supernova na Grande Nuvem de Magalhães, uma galáxia satélite da Via Láctea a 180 000 anos-luz. Esta imagem de raios-X exemplifica perfeitamente a estrutura de duplo choque que se forma pela explosão da supernova. 
O material ejectado expande-se e cria uma onda de choque que o lidera no seu avanço pelo gás interestelar - é o bordo brilhante que observamos na imagem. A pressão atrás desta onda de choque provoca uma outra onda de choque, agora na direcção do interior do remanescente, que aquece o material ejectado, excitando os átomos de ferro e silício - é a nuvem interna que vemos na imagem brilhar a azul claro.

Esta imagem permitiu aos astrónomos calcular a massa e composição do material ejectado, chegando à conclusão que se trata dos restos da explosão de um estrela anã branca.
A anã branca terá roubado demasiada matéria a uma companheira próxima e quando a sua massa ultrapassou 1,4 vezes a massa do Sol, tornou-se instável e sofreu uma explosão. A origem de DEM L71 foi assim uma supernova do tipo Ia, e não do tipo II, que, por sua vez, resulta da explosão de uma estrela de massa elevada. 

Aglomerado estelar Hodge 301

2003-04-05

Crédito: The Hubble Heritage Team (AURA / STScI / NASA).
Telescópio: Hubble Space Telescope (NASA/ESA).
Instrumento: Wide Field Planetary Camera 2 (WFPC2).
 
Hodge 301, o algomerado estelar em baixo à direita na imagem, está localizado no interior da conhecida Nebulosa da Tarântula, na Grande Nuvem de Magalhães. Este aglomerado de estrelas muito brilhantes e com massas extremamente elevadas, não é o algomerado mais brilhante ou com maior número de estrelas no seio desta nebulosa, mas é de longe o mais velho. 

Muitas das estrelas de Hodge 301 já explodiram como supernovas, tendo enviado grandes quantidades de material para a sua vizinhança, a velocidades de cerca de 350 km/s. Este material ejectado a alta velocidade mergulha na nebulosa da Tarântula, comprimindo o gás em múltiplas camadas e filamentos, visíveis em cima e à esquerda da imagem.
Igualmente visíveis perto do centro da imagem, pequenos glóbulos densos e colunas de gás e poeira interestelar, nos quais novas estrelas se encontram em formação, são progressivamente vaporizados pelo intenso vento estelar devido ao fortíssimo campo de radiação aí existente.

Nebulosa de emissão N 44

2010-12-09

Crédito: European Southern Observatory (ESO).
Telescópio: MPG/ESO 2,2m (La Silla Observatory, ESO).
Instrumento: Wide Field Imager (WFI).
 
N44 é uma região complexa e já muito estudada na Grande Nuvem de Magalhães. Nesta região, predomina uma nebulosa em forma de anel, associada a um agregado estelar com estrelas muito luminosas. Esta nebulosa emite raios-X, um indício de que várias estrelas de massa elevada terão explodido como supernovas nos últimos poucos milhões de anos.
A morfologia desta nebulosa parece ser bem explicada pela acção combinada de ventos estelares muito rápidos e remanescentes de supernovas, bem como formação estelar sequencial.
Contudo, a origem e interpretação dos componentes individuais deste ambiente complexo são ainda enigmáticas. Por exemplo, os movimentos do gás ionizado em N 44 são estranhos: não é ainda claro se se trata de movimentos internos do gás nas nuvens de gás e poeira aí existentes, ou se se trata de várias camadas da nebulosa que possuem velocidades diferentes.
Observações da distribuição dos diferentes componentes desta região (estrelas, nuvens de gás e poeira, gás ionizado) ajudarão a perceber melhor este ambiente tão rico, mas também tão complexo em N 44.

Nebulosa da Tarântula

2010-12-07

Crédito: ESA/NASA, ESO, Danny LaCrue (copyright).
Telescópio: Hubble Space Telescope + New Technology Telescope.
 
Esta imagem da nebulosa da Tarântula consiste num mosaico formado por imagens obtidas pelo Hubble Space Telescope e pelo New Technology Telescope do ESO.

A Tarântula situa-se a cerca de 170000 anos-luz de distância e faz parte da Grande Nuvem de Magalhães, podendo ser vista a olho nu no hemisfério Sul como uma pequena mancha leitosa no céu.
No centro da Tarântula existe um pequeno enxame de estrelas de elevada massa, designado por R136. Este enxame têm "apenas" 5 milhões de anos de idade e contém estrelas que ainda estão em formação. Na parte de baixo da imagem pode-se ainda ver Hodge 301, um enxame de estrelas cerca de 10 vezes mais velho do que R136. 
Algumas das estrelas de pertencentes a Hodge 301 são tão velhas que já explodiram sob a forma de supernova.

NGC 2070 - Nebulosa da Tarântula

2003-03-01

Crédito: European Southern Observatory (ESO).
Telescópio: Very Large Telescope - Kueyen (Paranal Observatory, ESO).
Instrumento: FOcal Reducer/low dispersion Spectrograph 2 (FORS2).
 
Esta nebulosa, também conhecida por 30 Doradus, ou ainda pelo número de catálogo NGC 2070, encontra-se na constelação do Dourado e pertence à Grande Nuvem de Magalhães, uma das nossas galáxias satélite, a uma distância de 170 000 anos-luz.
Esta nebulosa é uma das regiões de formação estelar mais extensas que se conhecem no nosso Grupo Local de galáxias. Começou por ser catalogada como uma estrela, mas foi depois reconhecida como nebulosa pelo astrónomo francês A. Lacaille, em 1751-1752.
A nebulosa da Tarântula é a única nebulosa extragaláctica que pode ser observada à vista desarmada. No seu centro, encontra-se um aglomerado estelar aberto, R 136, contendo muitas das estrela maiores, mais quentes e com maior massa que se conhecem. 
Esta imagem, obtida com o telescópio Kueyen de 8,2 m de diâmetro do VLT em 2000 é uma composição de 3 exposições nos filtros B (30 s, qualidade de imagem de 0,75 segundos de arco), V (15 s, qualidade de 0,70 segundos de arco), e R (10 s, qualidade 0,60 segundos de arco).

Nebulosa de emissão na Grande Nuvem de Magalhães

2010-12-20

Crédito: Y. Naze, G. Rauw, J. Manfroid, J. Vreux (Univ. Liege), Y. Chu (Univ. Illinois), ESO.
Telescópio: Very Large Telescope (VLT) - Melipal.
 
Imagem composta de uma nebulosa de emissão na Grande Nuvem de Magalhães obtida com um dos quatro telescópios que compõem o Very Large Telescope do ESO. Esta nebulosa está a ser excitada pela radiação emitida por uma estrela maciça existente na sua vizinhança.
A cor azul representa emissão proveniente de hélio, a verde de oxigénio e a vermelha de hidrogénio. Os filamentos de hélio que compõem esta nebulosa fazem dela bastante intrigante e misteriosa. A imagem cobre uma extensão correspondente a 150 anos-luz.
A Grande Nuvem de Magalhães, situada a cerca de 170000 anos-luz de distância, é uma galáxia companheira da nossa Via Láctea, visível à vista desarmada, embora só a partir do Hemisfério Sul. Foi baptizada a partir do nome do navegador português Fernão de Magalhães, um dos primeiros europeus a explorar as regiões a sul do equador.

Galáxia NGC 4945

2011-05-04

Crédito: R. Hurt (IPAC).
Telescópio: 2 Micron All Sky Survey (2MASS).

NGC 4945 é um exemplo de uma galáxia extremamente luminosa no infravermelho. 
Pensa-se que este tipo de galáxias esteja a ser sujeito a um intenso processo de formação de estrelas. O núcleo de NGC 4945 é a fonte infravermelha mais intensa do hemisfério Sul, a seguir às Nuvens de Magalhães.
Supõe-se que este núcleo 
possa estar a ser "alimentado" 
por uma buraco negro super-maciço. 
O fino disco desta galáxia espiral está orientado de perfil em relação a nós e obscurecido por camadas de poeira, o que torna esta galáxia relativamente difícil de observar, apesar da sua relativa proximidade
 Fonte:
NUCLIO-Portal do Astrônomo - Portugal
http://www.portaldoastronomo.org/npod.php?id=43
http://www.portaldoastronomo.org/npod.php?id=2992
http://www.portaldoastronomo.org/npod.php?id=2990