Na descrição não quântica do movimento de um pequeno objecto faz sentido dizer que num certo instante ele está em determinado ponto. Nesse mesmo instante também é possível determinar a sua velocidade. Dito por outras palavras: em cada instante posso saber onde está e para onde vai.
Imaginemos agora que estudamos o movimento de um electrão. Já sabemos que a descrição quântica deste sistema é feita, em cada instante, por uma função de todo o espaço, Ψ(x) . Esta função, designada por função de onda, é em geral complexa e o seu módulo representa a densidade de probabilidade. Isto quer dizer que se considerarmos um ponto x0 e um intervalo de “tamanho” Δx em torno de x0 a probabilidade de encontrarmos o electrão nesse intervalo é |Ψ(x0)|²Δx .
A figura seguinte mostra alguns exemplos de funções de onda simples.
No primeiro exemplo a função é praticamente zero para quase todos os valores de x e só é não nula numa pequena vizinhança do zero. A probabilidade de encontrar o electrão fora dessa região central é portanto zero. Quanto mais estreito e alto for o pico mais localizado está o electrão. Assim as funções sucessivamente representadas na figura correspondem a electrões cada vez mais “deslocalizados”. A função de onda de um electrão completamente “deslocalizado”, isto é, um electrão que tenha igual probabilidade de ser encontrado em todo o eixo dos x é:
onde m é a massa, v a sua velocidade e ħ é a constante de Planck dividida por 2π. A este electrão corresponde uma velocidade bem determinada v. Na verdade, conhecer o produto da massa pela velocidade, grandeza a que se dá o nome de momento linear, p = mv , é mais importante e mais geral do que saber a velocidade. Por esta razão continuaremos esta exposição em termos de x e p. Então, o exemplo anterior mostra o caso de um p bem definido e um x completamente indefinido.
Ondas localizadas, como as representadas na figura, correspondem a uma sobreposição de um número muito grande de ondas do tipo da anterior, com valores de p diferentes. Mas quão diferentes? Imaginemos que sobrepúnhamos um número infinito de ondas com valores de p a variarem num intervalo de largura Δ centrado em p0 . O Ψ assim obtido corresponderia a um electrão localizado numa região de largura Δx.
O que a teoria mostra, e a experiência confirma, é que electrões com grande dispersão no momento correspondem a pequena dispersão na posição e vice-versa. Grande dispersão no momento significa que são electrões que podem ter momentos muito diferentes. Pequena dispersão na posição significa que são electrões para os quais a posição é bem determinada. Os Δx e Δp podem ser encarados como incertezas na determinação da posição e do momento, respectivamente. O que a teoria mostra é que não podemos ter simultaneamente ambos arbitrariamente pequenos. Teremos sempre
Esta é uma das Relações de Incerteza de Heisenberg. O que se disse para a coordenada x e a componente do momento linear segundo o eixo dos x dir-se-ia do mesmo modo para a posição segundo y e z e as respectivas componentes do momento.
Estas relações são de tal maneira famosas que muitas vezes são quase identificadas com a própria Mecânica Quântica. Pior ainda! Têm sido vezes sem conta usadas erradamente e até mesmo abusadas por outros cientistas fora da Física. As relações não dizem que o conhecimento é sempre “nebuloso” e outras coisas no género. Posso determinar o momento dum electrão com a precisão que quiser, ou melhor, com a precisão que o meu engenho e arte forem capazes.
De igual modo posso medir a sua posição. O que as leis da Física nos dizem é que existem variáveis que não se podem medir simultaneamente com precisão arbitrária.
Fonte:
PRISMA
À LUZ DA CIÊNCIA
http://cftc.cii.fc.ul.pt/PRISMA/capitulos/capitulo1/modulo1/topico4.php
Nenhum comentário:
Postar um comentário
Quer comentar,o espaço é todo seu!