quinta-feira, 24 de março de 2011

FÓTONS E ELETRONS - PRISMA


Nos últimos anos do século XIX foi identificada a carga eléctrica elementar, designada por electrão. A corrente eléctrica é assim constituída por vários electrões que se deslocam ao longo do fio condutor e quando um corpo está carregado electricamente, a sua carga é sempre um múltiplo inteiro da carga elementar do electrão. Dito por outras palavras: Não é possível partir o electrão em pedaços cabendo a cada um uma fracção da sua carga eléctrica.

Ferro em brasa.
Ferro em brasa
Todos os que já viram um ferro muito quente, aquilo que vulgarmente se designa por um ferro em brasa, puderam constatar que emite luz.

Primeiro emite uma luz avermelhada, depois, se continuarmos a aquecer, a luz torna-se mais alaranjada, aquecendo ainda mais, a luz emitida é mais branca, chegando mesmo a ficar azulada. 

Esta relação entre a temperatura de um corpo e a cor da radiação emitida é uma propriedade de todos os corpos. O corpo humano emite radiação no domínio do infravermelho, ao qual os nossos olhos não são sensíveis, mas que pode ser detectada com sensores apropriados. Os óculos de visão nocturna usados pelos soldados americanos no Golfo são um uso deste princípio.

Recordemos agora que a luz que os nossos olhos vêem é uma pequena porção de uma infinidade de outras luzes que não vemos. A cada cor que vemos corresponde uma certa frequência ω e um certo comprimento de onda λ. Estas duas grandezas não são independentes, antes pelo contrário, o seu produto é uma constante universal, a velocidade de propagação da luz no vácuo, c, ou seja:


ωλ = 2πc

No espectro visível, o vermelho é a cor a que corresponde a menor frequência e o violeta a que corresponde a maior frequência. Para além do violeta temos o ultravioleta que é bem conhecido dos amantes da praia, pois é imprescindível proteger a pele dos seus efeitos potencialmente cancerígenos. Continuando a caminhar no sentido de luz com frequências cada vez maior passamos ao domínio dos raios X e posteriormente dos raios gama, usados na terapia de certas formas de cancro.

No lado do vermelho e agora com frequências cada vez menores temos o infravermelho, usado, por exemplo, nos comandos das televisões, e as ondas de rádio. Nestas últimas, nas chamadas ondas longas, utilizadas em comunicações marítimas, o comprimento de onda é da ordem dos km. Por contraste, à cor amarela corresponde um comprimento de onda de cerca de 5×10-7 m e a radiação gama tem comprimentos de onda inferiores a 10-12 m.

Espectro da radiação electromagnética.
Espectro da radiação electromagnética.

Radiação do Corpo Negro

Para estudar esta relação entre a temperatura e o espectro da luz emitida, o melhor é construir um forno especial, constituído por uma cavidade aquecida, cheia de radiação a essa temperatura e isolada do exterior. Na figura seguinte mostra-se o espectro de um forno destes à temperatura de 5000 K.

Espectro radiação do corpo negro a 5000 K.
Espectro radiação do corpo negro a 5000 K.
O gráfico dá a densidade de energia, isto é, a energia por unidade de volume da cavidade, em função do comprimento de onda da radiação. Como se pode verificar, a esta temperatura o máximo da curva está na região do visível, mas também existe luz com maiores e menores comprimentos de onda. Se arrefecermos o forno o máximo desloca-se para a direita e afasta-se portanto da zona visível.

No final do século XIX conheciam-se bem as leis da Termodinâmica e, depois dos trabalhos de Maxwell, sabia-se que a luz era composta por ondas electromagnéticas. Era então possível calcular a densidade de energia no interior do forno e comparar com a experiência. O resultado foi surpreendente: – Na região dos grandes comprimentos de onda, a teoria concordava com a experiência, mas esta concordância era cada vez pior à medida que se comparavam as densidades de energia para comprimentos de onda menores. Esta afirmação está bem documentada na figura acima, na linha a tracejado. Este desacordo é tão notório que, na época, ficou conhecido com o nome de catástrofe dos ultravioletas.

Olhando para o gráfico, verifica-se que a curva a tracejado cresce sempre no sentido dos menores comprimentos de onda, o que significaria que a densidade de energia correspondente a luz com menores comprimentos de onda aumentaria progressivamente. Densidades de energia cada vez maiores correspondem a luz com comprimentos de onda cada vez menores.

A densidade de energia é a energia em cada centímetro cúbico da cavidade. Se esta densidade aumentasse sem limite, a energia no volume total do forno seria infinita, o que é evidentemente um absurdo.
Onda electromagnética.
Onda electromagnética.
O que está mal neste cálculo? Essencialmente, a teoria admitia que os átomos das paredes do forno funcionavam como pequenas antenas que emitiam e absorviam a radiação. Quando a cavidade estava em equilíbrio térmico, estas ondas eram estacionárias.
Onda estacionária.
Onda estacionária.
Para explicar este conceito, imagine uma corda fixa num extremo. Pegue na outra extremidade e agite a corda de modo a criar uma onda que se irá propagar ao longo da corda. Ao atingir a outra extremidade, a onda reflecte-se, volta para trás e interfere com a primeira. Desta interferência pode nascer uma onda estacionária quando, apesar da corda continuar a vibrar, os pontos de amplitude máxima e mínima permanecerem nos mesmos locais. Se uma corda fixa nas duas extremidades tiver um metro de comprimento, podemos gerar uma onda estacionária com λ = 2 m, cf. a figura, e considere que o outro extremo é o segundo ponto vermelho.

Podemos agora explicar qualitativamente porque falhava a teoria. Com comprimentos de onda grandes só era possível ter ondas estacionárias entre alguns pontos da parede da cavidade, tal como na corda do exemplo anterior. Contudo, para comprimentos de onda cada vez mais pequenos, é cada vez mais fácil encontrar pontos entre os quais se podem estabelecer ondas estacionárias. Não havendo nenhum limite, isto é, quando o comprimento de onda tende para zero, tende para infinito o número de possibilidades de encher a cavidade. Esta cavidade cheia com um número infinito de ondas teria então uma energia infinita.

Max Planck.
Max Planck (1858 - 1947)

A saída para este problema foi encontrada, no Outono de 1900, por um professor de Física da Universidade de Berlim chamado Max Planck. Planck postulou que a luz, tal como a electricidade, também tinha uma quantidade elementar, posteriormente designada por fotão. Assim, se tivermos uma cavidade com energia total Et cheia com luz monocromática, de apenas uma frequência ω, ela terá um número inteiro, N, de fotões e cada qual tem energia ħω. Assim temos:

Et = Nħω

onde ħ é a constante de Planck, h dividida por 2π.
Com esta hipótese Planck foi capaz de calcular a distribuição da energia no interior da cavidade e reproduzir exactamente os resultados experimentais. Essa distribuição é uma partição da energia total pelos fotões que correspondem a cada frequência do espectro. Nos pequenos comprimentos de onda a que, como já vimos, correspondem grandes frequências, cada fotão tem cada vez mais energia.

Assim, para transportar a mesma quantidade de energia, precisamos de cada um número vez menor de fotões. Logo os ultravioletas, que os nossos olhos não vêem, correspondem a fotões mais energéticos do que os do visível. Por esse facto penetram na pele e podem alterar as nossas células. Com maior facilidade estas alterações são conseguidas com raios X e mais ainda com radiação gama, a que correspondem fotões ainda mais energéticos. Aliás, o seu uso terapêutico é justamente a destruição de determinadas células.

Difracção

Quando um feixe luminoso atravessa um orifício, se as dimensões deste forem da mesma ordem de grandeza do comprimento de onda, o feixe alarga e vai também para os lados, i.e., ocorre difracção. Basta olhar de noite para a luz de um candeeiro e ir fechando progressivamente os olhos. Verifica-se que, quando estes estiverem quase fechados, ver-se-á o candeeiro maior. Este aumento é justamente devido à dispersão da luz. Imaginemos agora que fazemos incidir um feixe luminoso monocromático num alvo, opaco, no qual existem dois orifícios com a mesma dimensão e da ordem do comprimento de onda da luz.

Se apenas um dos orifícios estiver aberto, já sabemos o que acontece: – Num segundo alvo, colocado a uma certa distância do primeiro, e paralelo a ele, aparece uma mancha luminosa cujas dimensões são maiores do que as do orifício. Contudo, se deixarmos os dois orifícios simultaneamente abertos, o que obtemos são riscas alternadamente claras e escuras. Em particular, no ponto que corresponde à posição média entre os dois orifícios, existe uma mancha luminosa e à sua direita e à sua esquerda temos duas zonas escuras. Este fenómeno chama-se interferência.

Experiência da dupla fenda em duas dimensões.
Experiência da dupla fenda em duas dimensões.

A verificação experimental da sua existência, feita em 1801 por Thomas Young, fez abandonar a antiga teoria corpuscular da luz de Newton em favor da teoria ondulatória. Com efeito, a interferência é fácil de explicar com ondas. A zona clara central está à mesma distância de ambos os orifícios e, portanto, as duas ondas aí interferem construtivamente, as cristas das duas ondas chegam ao mesmo tempo e reforçam-se. Mas, um pouco mais à direita ou à esquerda, uma das ondas tem que percorrer uma distância ligeiramente maior do que a outra e esta pequena diferença faz com que à crista da primeira onda se sobreponha agora a cava da segunda, logo as duas ondas anulam-se e fica escuro.

No fim do século XIX o Electromagnetismo tinha finalmente conseguido explicar que a luz era composta por ondas electromagnéticas, pelo que a Óptica ficou reduzida a um dos capítulos do electromagnetismo. Contudo, poucos meses antes de nascer o novo século, Planck volta a introduzir a ideia de corpúsculos de luz: – Os fotões.

O conceito de partícula ou corpúsculo elementar forma-se a partir da observação de corpos com uma dada dimensão. Foi assim que Demócrito na antiga Grécia apresentou a hipótese atomista e nas suas palavras «tudo o que existe são átomos e espaço vazio».

Sabemos hoje que os átomos estão longe de serem elementares, têm um núcleo central com um certo tamanho, uma certa massa e determinada carga eléctrica, positiva, e um número de electrões tal que o conjunto seja electricamente neutro. Assim, enquanto que o átomo mais simples de todos, o de hidrogénio, tem apenas um electrão, o de carbono tem seis, o de oxigénio oito e o de chumbo tem oitenta e dois electrões. Agora sabemos não só aquilo que distingue os átomos entre si, como também compreendemos como se constroem moléculas combinando vários átomos.

Experiência da dupla-fenda em três dimensões.
Experiência da dupla-fenda em três dimensões.

Quanto ao electrão, quando em 1897 J.J. Thomson descreveu as suas características, apresentou-o como uma partícula. Fazendo experiências sobre feixes de electrões, produzidos num dispositivo que pode ser considerado como o precursor dos modernos tubos dos aparelhos de televisão, determinou as suas energias, E, e os respectivos momentos lineares, \overrightarrow{p}. Em cada caso os valores obtidos obedeciam à relação:

E^2-(c\overrightarrow{p})^2=m^2c^4

em que a constante m é a massa do electrão.
Antes de Planck parecia que tudo estava mais em ordem. A corrente eléctrica era constituída por partículas, os electrões, todos com a mesma massa e com energias variáveis consoante fosse maior ou menor o seu momento linear, de acordo com a fórmula anterior. De notar ainda que o momento linear é uma grandeza que de certa maneira está relacionada com a energia, que todos sabemos estar associada ao movimento.

Em particular, se o objecto estiver em repouso, terá \overrightarrow{p}= 0 e, nesse caso, a equação anterior reduz-se à célebre fórmula E = mc².
Por outro lado, a luz era constituída por ondas. A cada cor corresponde uma certa frequência ω e um certo vector de onda \overrightarrow{k}. Tudo parecia em boa harmonia até que Planck relacionou esses dois mundos: à onda caracterizada por ω e \overrightarrow{k}correspondem fotões com energia E = ħω e momento linear \overrightarrow{p}=\hbar\overrightarrow{k}. Pode-se verificar assim que,

(\hbar\omega)^2-(\hbar\overrightarrow{k}c)^2=(\frac{h}{2\pi}\frac{2\pi}{T})^2-(\frac{h}{2\pi}\frac{2\pi}{\lambda}c)^2=0

onde a segunda igualdade a zero foi obtida recordando que c = λ / T. Desta
forma, ao calcular o primeiro membro da equação E^2-(c\overrightarrow{p})^2=m^2c^4, acaba-se de provar que a massa dos fotões é nula.

Corpo negro.
Corpo negro 
Mas então o tal forno a temperatura constante está cheio de ondas ou de partículas? A conclusão, que está de acordo com a experiência, é que não basta apenas um dos conceitos para explicar todas as propriedades da luz.

Do mesmo modo, outro Thomson, desta feita George, filho do físico que com tanta elegância demonstrou que os electrões eram partículas, provou que eles, tal como os fotões, também se difractam, ao repetir com electrões a experiência das duas fendas. Hoje todos sabemos que existem microscópios electrónicos, isto é, microscópios que usam feixes de electrões em vez de feixes luminosos. Em conclusão, fotões e electrões comportam-se quer como ondas quer como partículas.
 Fonte:
PRISMA 
À LUZ DA FÍSICA
 
http://cftc.cii.fc.ul.pt/PRISMA/capitulos/capitulo1/modulo1/topico2.php

O UNIVERSO É QUÂNTICO


Introdução


Deus joga aos dados.
A evolução da Física no decurso do século XX ficou marcada por duas revoluções. A segunda, a Relatividade Restrita, iniciada por Einstein em 1905, alterou profundamente os conceitos de espaço e principalmente de tempo. Mas a primeira, que teve a sua origem no início do século com o trabalho de Planck sobre a teoria do corpo negro, produziu modificações ainda mais profundas ao nível de todos os conceitos fundamentais da Física. Trata-se da teoria que inicialmente se denominou «Mecânica Quântica» e actualmente se denomina Física Quântica.

Representação de um átomo.
Representação de um átomo.
O termo “quantum”, do latim “quanto” refere-se às unidades discretas que a teoria atribui a certas quantidades físicas, tais como a energia de um átomo em repouso.

A descoberta de que ondas podem ser medidas em pequenos pacotes de energia chamados quanta, com propriedades de partículas, levou ao nascimento da Mecânica Quântica. As suas bases foram estabelecidas durante a primeira metade do século XX por Max Planck, Albert Einstein, Niels Bohr, Werner Heisenberg, Erwin Schrödinger, Max Born, John von Neumann, Paul Dirac, Wolfgang Pauli, entre outros.

Imagem computorizada de um curral de electrões.
Imagem computorizada de um curral de electrões.
É interessante notar que toda a física é quântica e a física não quântica é uma aproximação, muitas vezes excelente, da primeira. A razão porque a aproximação não quântica é boa explica-se atendendo ao valor da constante de Planck, h. Assim temos h ≅ 6.626×10-34 (Joule × segundo), o que é um valor extraordinariamente pequeno. Se o valor de h fosse zero as leis da física clássica seriam exactas e não apenas uma excelente aproximação.

 Fonte:
PRISMA 
À LUZ DA FÍSICA
 
http://cftc.cii.fc.ul.pt/PRISMA/capitulos/capitulo1/modulo1/topico1.php

quarta-feira, 23 de março de 2011

VIA LÁCTEA ABRIGARIA 2 BILHÕES DE TERRAS

 

Galáxia abrigaria até 2 bilhões de "Terras", diz pesquisa

DE SÃO PAULO
Apenas na nossa galáxia, a Via Láctea, podem existir até 2 bilhões de planetas de tamanho semelhante ao da Terra. E isso é apenas a ponta do iceberg estelar. Cientistas estimam que existam mais de 50 bilhões de outras galáxias no Universo. 

Os primeiros dados do telescópio Kepler, divulgados em fevereiro, mas reunidos agora em um novo estudo de pesquisadores do Laboratório de Propulsão a Jato da Nasa, na Califórnia, sugerem que entre 1,4% e 2,7% das estrelas parecidas com o Sol possam ter planetas com tamanho entre 0,8 e 2 vezes o da Terra. 

A maioria deve estar na chamada zona habitável --a distância da estrela que permite a presença de água líquida, considerada condição essencial à vida. 

Esse detalhe animou os cientistas. "Com um número assim tão grande [de planetas com tamanho parecido com o da Terra], há uma boa chance de existir vida, talvez até inteligente, em alguns deles", disse ao site Space.com o astrônomo da Nasa José Catanzarite, um dos responsáveis pela pesquisa.



Ilustração de Corot-7b, o primeiro planeta rochoso encontrado fora do Sistema Solar, achado por sonda europeira
Ilustração de Corot-7b, o primeiro planeta rochoso encontrado fora do Sistema Solar, achado por sonda europeira


DISTANTES
Ainda assim, nas cem estrelas semelhantes ao Sol mais próximas da Terra (a até umas poucas dezenas de anos-luz daqui), deve haver apenas duas com planetas do tamanho do nosso. 

Mas, segundo os autores do trabalho publicado no "Astrophysical Journal", a quantidade de "gêmeas" nas redondezas pode aumentar. Catanzarite notou que outro tipo de estrela --as gigantes vermelhas-- também pode abrigar planetas desse tipo. 

Nesses astros, que são mais antigos e já esgotaram o suprimento de gás hélio, a detecção é mais complexa. Os cientistas pretendem localizar os planetas pela força gravitacional que eles exercem, e não por alterações no brilho da estrela, como no telescópio Kepler. 

Como estrelas desse tipo são bem mais comuns do que as do tipo do Sol, é muito provável que possam existir ainda mais "Terras" por aí.


 Fonte:
"GENISMO"
 

L. Calñada/Efe/ESO
http://www1.folha.uol.com.br/ciencia/892727-galaxia-abrigaria-ate-2-bilhoes-de-terras-diz-pesquisa.shtml

domingo, 20 de março de 2011

AS ORIGENS DO SISTEMA SOLAR

 


Se alguma vez fiz descobertas valiosas, 
tal deveu-se mais a uma observação paciente,
do que a qualquer outro talento.
Isaac Newton

Galáxias longínquas.
Galáxias longínquas. 
À escala do tempo médio de vida de um ser humano, a dinâmica dos corpos celestes, dos quais fazem parte as estrelas, os planetas, as nebulosas, os cometas, entre outros, parece-nos tranquila, lenta e imutável. No entanto, se pudéssemos observar o cosmos em câmara acelerada, seríamos surpreendidos pelo insuspeitado dinamismo que existe às grandes escalas do Universo: o movimento das galáxias, o nascimento e morte de estrelas e sistemas solares, e todo o movimento imperceptível aos nossos olhos das grandes nebulosas e das poeiras interestelares.

O processo da nucleosíntese: –As reacções que dão origem à formação de núcleos de elementos leves no Universo, ocorreu quando este tinha entre um segundo e alguns minutos de vida. Um dos grandes sucessos do actual modelo de formação do Universo é o cálculo das abundâncias relativas destes núcleos, em bom acordo com as observações:
  1. 75% de núcleos de hidrogénio,
  2. 25% de núcleos de hélio,
  3. pequeníssimas fracções de núcleos de deutério, de ³He (um isótopo do hélio) e de lítio.
Desde a sua formação o Universo tem arrefecido e quando a sua temperatura desceu para os 3000 K (o Universo tinha nessa altura cerca de 300 000 anos) a radiação e matéria desacoplaram-se, o que permitiu a formação dos átomos a partir dos núcleos e dos electrões e a libertação da radiação de fundo. As espécies presentes e as abundâncias relativas são as que resultam da nucleosíntese, e só existem os elementos químicos mais leves. É apenas mais tarde, com as reacções nucleares ocorridas no interior das estrelas, que os elementos mais pesados, essenciais à vida, são sintetizados.

As previsões da Lei de Hubble apontam para uma idade do Universo entre 13 e 15 mil milhões de anos. Para a Via Láctea, quase tão velha como o próprio Universo, é estimada uma idade de 13.6 mil milhões de anos. A datação de meteoritos do sistema solar, das rochas mais antigas da Terra (pequenos cristais de zircónio provenientes das Jack Hills, Austrália Ocidental), assim como dados obtidos da actual fase da vida do Sol apontam para uma idade do sistema solar entre 4.5 e 4.6 mil milhões de anos.

Portanto, foi aproximadamente a dois terços da idade actual do Universo que num dos braços da Via Láctea, no seio de uma nuvem molecular gigante, se precipitou a agregação, por gravidade mútua dessas partículas, dando origem ao Sol e, na sua periferia, ao sistema solar.

Onde nascem as estrelas?

A dinâmica gravitacional das galáxias acumula em certas zonas, com anos luz de tamanho, grandes quantidades de gás e pó interestelar a densidades muito baixas. É no seio destas nebulosas que se pode dar o nascimento de estrelas. Para tal, é necessário que a atracção gravitacional entre os átomos ou moléculas do gás suplante a pressão do gás, que tende a afastá-los.

Por esta razão, numa zona de formação de estrelas é preciso, por um lado, que a densidade não seja demasiado baixa, de forma a que as partículas possam "comunicar" gravitacionalmente de forma significativa, por outro é necessário que a temperatura seja reduzida de forma a que a pressão também seja pequena.

Nebulosa cabeça de cavalo.

Existem vários tipos de nebulosas, a maioria demasiado rarefeitas para que possa acontecer o nascimento de uma estrela. Mas uma perturbação exterior, como a onda de choque criada pela explosão supernova de uma estrela próxima, pode provocar uma contracção nos gases e poeiras levando à formação de uma nuvem mais densa, opaca, chamada por isso nebulosa escura. É nestas nebulosas, com uma massa equivalente a centenas ou milhares de massas solares e com dezenas de anos luz de comprimento, que nascem as estrelas. Na figura pode ver a famosa nebulosa cabeça de cavalo, um exemplo de uma nebulosa escura.

De uma nebulosa escura ao sistema solar

Formação do sistema solar.
Formação do sistema solar. 
Numa nebulosa escura a densidade de gases e poeiras é suficiente para precipitar a sua contracção gravitacional. Forma-se uma grande nuvem de gás, muito maior do que o nosso sistema solar, chamada nebulosa solar onde a pressão é suficientemente baixa para que a atracção gravitacional domine. À medida que a nuvem se vai contraindo, a temperatura dos gases que a constituem aumenta, assim como a pressão. O desenlace deste processo depende da massa da nuvem em contracção.

Para uma estrela típica, com uma massa da ordem da massa do Sol, a contracção continua até que o seu interior atinge os milhões de Kelvins e têm início as reacções termonucleares: –A transformação de hidrogénio em hélio por via da fusão nuclear. Estas reacções libertam uma quantidade tal de energia que a pressão no interior da estrela aumenta o suficiente para travar a contracção gravitacional e a estrela atinge um equilíbrio hidrostático, que manterá ao longo de muitos milhões de anos (10 mil milhões de anos para uma estrela com a massa do nosso Sol) até esgotar o seu combustível nuclear: –O hidrogénio.

No Sol, assim como noutros sistemas solares, a nuvem inicial teria algum movimento de rotação em torno do seu centro, resultado do balanço global dos movimentos desordenados das partículas. À medida que a nuvem foi encolhendo, e à semelhança do que acontece com um patinador que encolhe os braços para girar mais rápido, como pode ser visto no seguinte vídeo (cortesia de Mike Pavol), a velocidade de rotação das partículas foi aumentando e a força centrífuga associada a esta rotação fez com que as partículas a rodar suficientemente longe do eixo de rotação pudessem escapar ao colapso gravitacional na protoestrela, ficando a formar uma nuvem achatada perpendicular ao eixo de rotação, ver figura.

É neste disco de partículas em órbitas aproximadamente circulares e coplanares que se vão formar os planetas .



Órbitas dos planetas do sistema solar.


A formação do nosso sistema solar

Nos diversos ramos da Física, o uso de computadores é cada vez mais indispensável como ferramenta para o teste de modelos teóricos através das chamadas simulações computacionais. Se quisermos testar a plausibilidade de um modelo ou uma teoria física podemos, usando um computador, criar um fenómeno virtual que se comporta de acordo com esse modelo. Comparando os resultados obtidos com aquilo que nos mostra a realidade, podemos ajuizar mais facilmente sobre a qualidade do modelo e, eventualmente, melhorá-lo.

As simulações computacionais baseadas nas teorias de que dispomos mostram que, em circunstâncias semelhantes aquelas que deram origem ao nosso sistema solar, da periferia da nebulosa solar resultaria um sistema solar semelhante ao nosso. Os seus traços gerais mais evidentes são um primeiro grupo de planetas rochosos, relativamente pequenos, chamados planetas terrestres ou interiores dos quais fazem parte: Mercúrio, Vénus, a Terra e Marte. Separados destes pela cintura de asteróides estão os planetas exteriores, gigantes gasosos, também conhecidos como planetas jovianos: Júpiter, Saturno, Urano, Neptuno e Plutão (na verdade Plutão não é um gigante gasoso, mas pela posição da sua órbita no sistema solar é agrupado neste 2º grupo de planetas).

Estes dois grupos de planetas diferem entre si na sua composição química, tamanho e aspecto. No entanto todos eles exibem um comportamento semelhante: –Orbitam em torno do Sol, no mesmo sentido e aproximadamente no mesmo plano, como um relógio que funciona desde há milhões de anos. Explicar como é que a partir da nebulosa solar, o sistema solar ganhou as características actuais é ainda um desafio, no entanto os aspectos mais importantes parecem ter sido já identificados e podem resumir-se nos seguintes pontos:

A nebulosa solar

Nebulosa solar.
Nebulosa solar. 
Como foi dito, a nebulosa solar começou por ser uma nuvem gigante de densidade baixa, mas contudo suficiente para possibilitar a contracção gravitacional dos seus gases e poeiras que, no centro, onde a concentração de matéria era maior, começaram a formar uma protoestrela.

À medida que a nebulosa solar diminuía de tamanho, aumentava a sua velocidade de rotação e o material das zonas exteriores, que não foi incorporado na protoestrela devido à força centrífuga, formou o chamado disco protoplanetário. Foi a partir do material deste disco, composto principalmente por hidrogénio e hélio no estado gasoso e uma pequena percentagem de outros elementos mais pesados, que se formaram os planetas do sistema solar.

Disco protoplanetário.
Disco protoplanetário. 
Desde o princípio da contracção da nebulosa solar até à formação do disco protoplanetário terão passado 100 mil anos; Até ao início das reacções termonucleares no interior da estrela terão passado 10 milhões de anos. Por esta razão pensa-se que a formação dos planetas começou muito antes de o Sol ter o tamanho e a luminosidade actuais. No início da contracção, a nebulosa solar teria uma temperatura de 50 K, mas à medida que a protoestrela foi aquecendo, a temperatura da parte interior do disco foi também aumentando até cerca de 2000 K na zona mais próxima do Sol.

Assim, o disco protoplanetário então formado ganhou duas regiões distintas: uma interior, donde resultaram os planetas terrestres, onde as temperaturas eram da ordem das centenas de graus Kelvin, e uma região exterior, que deu origem aos planetas gasosos e onde as temperaturas mantiveram-se na ordem das dezenas de graus Kelvin.

Planetas exteriores e planetas interiores

Nesta fase a pressão era suficientemente baixa para que as substâncias não pudessem existir no estado líquido, ou se encontravam no estado sólido ou no estado gasoso, dependendo da sua temperatura de condensação. O hidrogénio e o hélio têm temperaturas de condensação muito baixas e consequentemente em toda a nebulosa encontravam-se no estado gasoso. No entanto, na zona interior do disco, apenas os materiais com altas temperaturas de condensação como o ferro, o magnésio, o enxofre, entre outros, sobreviveram no seu estado sólido. Substâncias como a água, o metano e a amónia foram vaporizadas pelas altas temperaturas.

Planetesimais.
Planetesimais. 
Nestas condições, na zona interior, os pequenos corpos que resistiam às altas temperaturas em órbita do futuro Sol começaram a atrair-se gravitacionalmente, a colidir e a ligar-se, dando origem a objectos cada vez maiores. À medida que foram aumentando de tamanho, passando de planetesimais a protoplanetas, as colisões entre os vários corpos foram sendo cada vez mais espectaculares. Foi provavelmente numa destas colisões que a Lua ficou gravitacionalmente ligada à Terra. Foi ainda devido ao calor libertado nestas colisões que o material dos planetas recém-formados derreteu, permitindo que os materiais mais pesados se 'afundassem', dando origem aos densos núcleos de ferro dos planetas interiores.

Protoplanetas.
Protoplanetas. 
Quanto aos planetas exteriores, também começaram por ser pequenos planetesimais, mas desta feita não só os materiais rochosos estavam disponíveis para formar pequenos planetas, mas também o gelo existia em quantidades muito superiores. Esta é uma das razões pelas quais os planetas exteriores são muito maiores do que os interiores. Além disso havia ainda grandes quantidades de hidrogénio e hélio, que pelas baixas temperaturas se moviam mais lentamente, o que facilitou a sua captura pelos planetas em formação. O resultado foram vários planetas gigantes, com núcleos rochosos, de massas 5 a 10 vezes superiores à massa da Terra e com uma grande atmosfera de hidrogénio envolvente.

Sistema solar.
Sistema solar. 
Entre Marte e Júpiter sobreviveu ainda a chamada cintura de asteróides. Ao que tudo indica são protoplanetas que nunca chegaram a formar um planeta devido às perturbações gravitacionais causadas por Júpiter.
Julga-se que a restante matéria da nebulosa solar, que não foi incorporada na formação de nenhum planeta, tenha sido ejectada para fora do sistema solar pelo vento solar, então milhares de vezes mais forte do que actualmente e por encontros gravitacionais.




 Fonte:
PRISMA  - Á LUZ DA FÍSICA
 
http://cftc.cii.fc.ul.pt/PRISMA/capitulos/capitulo1/modulo5/topico1.php


Oracion a ISIS (Madre divina)

Isis,Divina-Mãe
vem, volta para a Terra
- seus filhos clamam.

*