FAQ (Frequently Asked Questions) for this video
Q: Where can I get free sheet music for this piece?
A: Here's a copy, thanks to Clint S. Mars:
http://www.musanim.com/pdf/debussyclairdelune.pdf
Q: Can I follow the person who made this video on Twitter?
A: Sure, Stephen Malinowski's Twitter ID is: musanim
Q: Where can I download this song?
A: You can get it at iTunes:
http://tinyurl.com/ad9vnc
or at Amazon:
http://www.amazon.com/Clair-De-Lune-Debussy/dp/B001OIUS90
Q: I wish I could play this piece.
A: You can! If you have a MIDI setup (MIDI keyboard with damper pedal, MIDI piano, and a computer running Windows or Mac OS X), you can play this piece using the conductor program. You need to learn the piece really well, but you don't need to learn to play the piano. The article describing how this works is here
http://www.musanim.com/tapper/
and the software is available here (free)
http://www.musan...
mais
Nebulosas Planetárias:
O Belo em Detalhe
Nebulosa Planetária Wray 17-1. Crédito: R. Corradi.
Foi num artigo publicado em 1785, por Willian Herschel, autor de famosos catálogos de nebulosas planetárias e aglomerados estelares, que as nebulosas planetárias foram assim classificadas pela primeira vez. O nome surgiu porque o seu aspecto recordava os discos esverdeados de alguns planetas e por apresentarem características observacionais distintas dos demais objectos que estudava. Porém, estas não são, em absoluto, planetas nem mesmo nebulosas jovens em processo de condensação para a formação de novas estrelas...
Hoje em dia sabemos que estrelas do tipo solar, no final de suas vidas, desprendem suas camadas mais externas que, pouco a pouco, se expandem e diluem até se confundirem com o meio interestelar, enquanto o resto da estrela segue a sua evolução até se transformar numa anã branca, ou seja num "cadáver estelar". Enfim, apesar do nome que recebem, nebulosas planetárias representam a última fase da evolução da maioria das estrelas -- e também do Sol, dentro de 4.500 milhões de anos.
Figura 1: M27, a Dumbbell Nebula (Nebulosa dos Halteres).
Em termos do tamanho projectado no céu, é a maior das nebulosas planetárias, medindo 16 minutos de arco. A cor verde representa a linha de emissão de átomos de oxigénio duas vezes ionizado ([OIII]) e o vermelho indica aquela dos átomos de nitrogénio uma vez ionizado ([NII]) e do hidrogénio (Hα).
Esta imagem foi obtida com o telescópio de 0.82m IAC80 (situado no Observatorio del Teide). Crédito: The IAC Morphological Catalog of Northern Galactic Planetary Nebulae (Manchado et al. 1996).
Uma nebulosa planetária compõem-se por gás e poeira, os quais circundam uma estrela do tipo solar quando esta se encontra nas fases finais de sua evolução. Esta estrela, a estrela central da nebulosa planetária, ilumina a nebulosidade ao seu redor, que por sua vez é observada em todas as zonas do espectro electromagnético, desde rádio até raios-X. Comparadas com as estrelas, que emitem numa banda de luz contínua (luz branca), as nebulosas planetárias emitem sua luz em bandas muito mais estreitas, ou seja, em linhas de emissão (luz discreta com diferentes cores). Devido a esta característica as nebulosas planetárias são facilmente identificadas no céu quando se utiliza um telescópio contendo um prisma, sendo visualizadas como um verdadeiro caleidoscópio. As nebulosas planetárias são "intrinsecamente" tão belas, que as suas imagens observadas com o Hubble Space Telescope estão entre as mais conhecidas pelo público não especializado.
Data de 1764 a primeira vez que se observou uma nebulosa planetária. O observador, Charles Messier, encontrou um objecto nebular que catalogou como M27, hoje conhecida como Dumbbell Nebula (Nebulosa dos Halteres, Figura 1). Esta observação foi seguida por aquela da Nebulosa do Anel (M57, Figura 2), em 1779, por Antoine Darquier. Este último descreveu a Nebulosa do Anel como "pouco brilhante, mas com contornos bem definidos... é tão grande quanto Júpiter, parecendo-se com um planeta ténue". O termo "nebulosa planetária" (NP) foi-lhes atribuído por William Herschel, dadas as suas similaridades com os discos esverdeados de planetas como Úrano e Neptuno, assim separando-as das nebulosas brancas formadas por estrelas, ou seja, das galáxias.
Figura 2: A Ring Nebula (Nebulosa do Anel, M57), um dos objectos celestes mais fotografados. Suas cascas mais externas definem um tamanho de 3,8 minutos de arco (aqui o azul representa a linha de emissão [OIII] e o vermelho [NII]+Hα).
Imagem obtida com o telescópio de 2.56m NOT (situado no Observatorio del Roque de los Muchachos). Crédito: The IAC Morphological Catalog of Northern Galactic Planetary Nebulae (Manchado et al. 1996).
Em suma, quando se observa uma NP com baixa resolução espacial, esta parece redonda e poderia assemelhar-se a um planeta, daí este nome tão equivocado. Por outro lado, quando observada com grande resolução espacial, vê-se claramente que estas são constituídas por muitas e variadas estruturas. Estas estruturas (tanto de grande quanto de pequena escala) são o foco do estudo que faremos sobre nebulosas planetárias ao longo deste mês.
Mas, o que são estas estruturas? A Nebulosa do Olho de Gato, por exemplo, situada na constelação do Dragão, compõem-se de uma grande variedade de estruturas simétricas, as quais incluem: um halo filamentar extenso; vários anéis concêntricos; um par de jactos e um complexo conjunto de cascas no seu núcleo (NGC 6543, Figura 3).
Em particular, e para que comecemos a ter em mente algumas das características destas nebulosas, o conjunto de cascas nebulares no coração de NGC 6543 tem uns 1.000 anos de idade. Contornando este núcleo encontram-se uma série de anéis concêntricos (em azul), cada um destes anéis está no limite de uma bolha de gás, em expansão, expulsada pela estrela central em intervalos regulares de uns 1.500 anos, sendo que o primeiro ocorreu há uns 18.000 anos atrás. Já os filamentos mais externos (verdes) datam, no máximo, de há uns 60.000 anos. A massa do material estelar desta nebulosa deve ser similar à massa do Sol.
Figura 3: NGC 6543, a Cat`s Eye Nebula (Nebulosa do Olho do Gato), obtida com o telescópio de 2.56m NOT, por R. Corradi e D. R. Gonçalves (em 2002). A imagem, capta a emissão em [NII] (vermelho) e em [OIII] (verde e azul).
A dimensão da imagem é de 3,2 x 3 minutos de arco. O processamento da imagem destaca detalhes da parte interna brilhante revelando simultaneamente os ténues anéis concêntricos e o halo filamentar.
Apesar do facto de que especialistas têm dedicado muita atenção às nebulosas planetárias, e também às suas múltiplas estruturas, a complexidade dos detalhes que encontramos nestes objectos continua surpreendendo. Por exemplo, no caso de NGC 6543, que informação sacamos dos filamentos externos? Depois de expulsar séries de bolhas de gás, de forma concêntrica, que efeitos provocaram a ejecção do conjunto de cascas do coração da nebulosa? Que mecanismo é responsável pelos misteriosos jactos que parecem sair dos dois extremos dos arcos elípticos (amarelo brilhante) que rodeiam as cascas (vermelhas) no núcleo da nebulosa?
Figura 4: Esquema da vida de uma estrela do tipo solar (adaptação da Figura 7.2 de "Cosmic Butterflies - The Colorful Misteries of Planetary Nebulae" de S. Kwok).
Já sabemos que as nebulosas planetárias originam-se no final da vida de estrelas com massas similares àquela do Sol. Agora queremos entender seu processo de formação, ou seja: o que faz com que estas estrelas se transformem em nebulosas planetárias?
O esquema da Figura 4, nos ajudará a responder esta questão. Este diagrama representa a vida das estrelas do tipo solar (proposto por B. Paczynski em 1970). No princípio (canto inferior direito do diagrama) a luminosidade destas estrelas resulta da queima de hidrogénio no núcleo -o que origina o hélio que também entrará em combustão. Estas estrelas passam a maior parte de suas vidas nesta fase de queima nuclear de hidrogénio - quase 10.000 milhões de anos. Quando se acaba o hidrogénio do núcleo, a estrela se expande, transformando-se numa gigante vermelha, ao mesmo tempo que o seu núcleo se contrai. Nesta fase a energia da estrela vem da queima do hidrogénio, não no núcleo, mas numa camada mais externa. Como consequência do facto de que o núcleo se contrai ainda mais, o hélio volta a ser queimado no núcleo e a estrela experimenta mais uma fase de expansão nas camadas externas. Quando a estrela entra no ramo assimptótico das gigantes (AGB) o seu núcleo já não queima hidrogénio nem hélio, e compõe-se do que sobrou das combustões anteriores, ou seja, de carbono e oxigénio. Nesta fase, e por um período de aproximadamente 1 milhão de anos, a estrela continuará seu processo de expansão, ao mesmo tempo que sua luminosidade crescerá, alçando valores de umas 1.000 vezes a luminosidade do Sol. Os ventos estrelares presentes nesta e nas fases imediatamente posteriores das estrelas do tipo solar (ou seja os ventos que ocorrem numa AGB -culminando na expulsão da nebulosa- e numa pós-AGB, englobando as fases AGB, proto planetária e nebulosa planetária, ver esquema) gradualmente expulsam o gás de hidrogénio das camadas mais externas, deixando exposto o núcleo quente. O que sobra dos ventos estelares é a própria nebulosa planetária. Assim, aquela que denominamos a estrela central de uma nebulosa planetária é justamente a estrela da qual estivemos "acompanhando" a evolução. Quando cessa a combustão do hidrogénio nas camadas externas, a estrela perde seu brilho e transforma-se em uma anã branca.
Em síntese, as estrelas do tipo solar, quando chegam às fases finais de suas vidas, expelem grande parte do gás da sua atmosfera, pelo menos em dois episódios distintos de perda de massa. Primeiro, devido ao vento lento de uma estrela no ramo assimptótico das gigantes (ou estrela AGB), cuja velocidade típica é da ordem de 10 km/s, com uma taxa de perda de massa de 10
-5 M
sol/ano. E depois, através do vento rápido, expelido durante a fase imediatamente posterior da estrela central (ou seja, no vento de uma pós-AGB), caracterizado por 10
-7 M
sol/ano e que alcança uma velocidade de até 2.000 km/s. Aqui vale ressaltar que a mais importante das características destes ventos é que eles ocorrem durante o último milhão de anos, de estrelas que vivem, tipicamente, 10.000 milhões de anos.
Figura 5: Esquema da interacção dos ventos estelares que dão origem às nebulosas planetárias (adaptação da Figura 7 de S. Kwok (1994, PASP, 106, 344).
A teoria mais aceite para a formação das nebulosas planetárias (NP) é ainda mais recente, proposta por S. Kwok, C. Purton e P. Fitzgerald em 1978 (ver Figura 5). Esta teoria diz que estas são o resultado da interacção dos dois ventos estelares que estamos discutindo: da AGB e da pós-AGB. Seguindo o raciocínio do parágrafo anterior -na fase em que o núcleo da estrela fica exposto- o vento estelar rápido, procedente deste núcleo quente e compacto, varre o material expelido previamente, dando forma à nebulosa. O invólucro desta nebulosa, sua casca, expande-se a uma velocidade de aproximadamente 25 km/s (velocidade esta intermédia entre aquelas dos ventos que precedem e dão origem à NP), é mais denso do que estes ventos estelares, tem temperaturas da ordem de 10.000 K e dura mais ou menos 30.000 anos. Esquematicamente (Figura 5), vê-se claramente como se dá este processo de formação. Ou seja, o gás do vento rápido (pós-AGB), ao expandir-se sobre o material do vento lento (AGB), forma uma frente de choque. Na região mais interna o limite desta frente de choque é o próprio vento rápido, enquanto que o choque externo está delimitado por uma casca densa (devido à acumulação do material varrido pelo vento rápido) que, quando observada no óptico, é a componente mais brilhante de uma nebulosa planetária. Entre os choques interno e externo, encontra-se a bolha quente (somente observável em raios-X). E, por último, o halo compõem-se pelo que resta do vento AGB, e devido à sua baixa densidade quando comparado com a casca, é o componente menos brilhante das NP nas imagens ópticas (ver Figuras 1, 2 e 3).
Toda a explicação do parágrafo anterior diz respeito aos aspectos dinâmicos da formação das NP. Mas, qual é a fonte de sua energia, ou equivalentemente, qual é a fonte do seu brilho? As nebulosas planetárias brilham porque os fotões energéticos (fotões ultravioleta) da estrela central "iluminam" suas cascas e halos, fazendo com que o gás, inicialmente neutro, se ionize e emita a radiação que observamos.
As ideias expostas acima são capazes de explicar satisfatoriamente a formação das NP, não só daquelas esféricas, mas também daquelas cuja casca tem forma elíptica, bipolar, ou com simetria de ponto. Tais ideias também dão conta das propriedades físicas (temperaturas e densidades) e cinemáticas das NP, pelo menos no que diz respeito às suas macro estruturas (cascas e halos). Há, por outro lado, outras componentes das NP que não entendemos tão bem -as suas micro estruturas- cujas características, quando comparadas àquelas das macro estruturas, serão estudadas nos próximos capítulos.
Quanto tentamos identificar as estruturas das nebulosas planetárias vemos que aquelas de maior escala são os halos, que em geral são arredondados. Depois, em escalas intermédas, aparecem as cascas, que podem ser redondas, elípticas, bipolares, com simetria de ponto ou irregulares. Em escalas muito menores, existe uma série de micro estruturas que apresentam morfologias tão variadas como nódulos, filamentos e jactos. A Figura 6 apresenta um esquema das várias estruturas (componentes) das nebulosas planetárias -tanto em grande quanto em pequena escala- e na Figura 7 apresentamos algumas imagens de NP que contêm tais micro estruturas.
Figura 6a - Classificação morfológica das cascas das nebulosas planetárias.
Como mencionado anteriormente, as cascas das NP têm origem na interacção dos ventos. Os halos, por outro lado, provavelmente são compostos pelo gás expulso durante as fases activas da evolução estelar anteriores à compressão da nebulosa (ou seja, por restos do vento lento da AGB). Este gás está, agora, sendo iluminado pelos fotões altamente energéticos da estrela quente, ou seja, da estrela central da nebulosa planetária.
Figura 6b - Simulações numéricas de García-Segura e López (2000), mostrando os diferentes tipos morfológicos de nebulosas planetárias, em alguns casos contendo micro estruturas. Em verde vemos a emissão fotoionizada e em vermelho aquela excitada por choques.
Muitas micro estruturas estão sendo descobertas graças ao uso de telescópios capazes de obter imagens de alta resolução espacial. Por exemplo, as estruturas de pequena escala podem ser facilmente estudadas com o Hubble Space Telescope. Porém outras micro estruturas, como os "ansae" de NGC 7009 (ver Figura 7), são conhecidos já há muito tempo (descobertos por L. Aller em 1936). Recentemente, tais estruturas foram baptizadas com acrónimos como FLIERs (fast, low-ionization emission regions; regiões de emissão rápidas e de baixa ionização), por Balick e colaboradores em 1993; ou BRETs (bipolar, rotating, episodic jets; jactos bipolares episódicos e em rotação); por López e colaboradores em 1995. O interessante deste tipo de acrónimos é que são capazes de descrever algumas das características físicas destas estruturas.
Figura 6c - Esquema dos diferentes tipos de micro estruturas, vistas em pares simétricos ou isoladas com respeito à estrela central.
As micro estruturas têm uma grande variedade de aparências e, além disso, podem deslocar-se com a mesma velocidade do meio que as circunda ou viajar de forma peculiar, ou seja, com velocidades diferenciadas daquela do ambiente. Há três anos desenvolvemos uma classificação detalhada das estruturas de pequena escala das nebulosas planetárias (D.R. Gonçalves, R. Corradi e A. Mampaso, 2001). Neste trabalho relacionamos, pela primeira vez, todas as nebulosas planetárias (umas 50) com micro estruturas, considerando seus tipos morfológicos e cinemáticos, bem como os processos físicos propostos para sua formação (ver
http://www.iac.es/galeria/denise/ onde se encontra, actualizada, a lista completa destas NP).
Figura 7a - Pares de Jactos (à esquerda) e Pares de Estruturas Similares a Jactos (à direita).
Créditos: imagens obtidas com o filtro F555W de NGC 3918, arquivo do Hubble Space Telescope; NGC 7009, Balick et al. (1998); restantes, adaptadas de uma série de artigos publicados por Corradi et al. entre 1997 e 2000, como resultado dos estudos do Grupo de Nebulosas Bipolares do Instituto de Astrofísica de Canárias. Estas foram obtidas em diferentes telescópios, e maioritariamente com a luz do oxigénio duas vezes ionizado ([OIII]) e do nitrogénio uma vez ionizado ([NII]).
Figura 7b - Nódulos ou filamentos em Pares (à esquerda) e Nódulos ou Filamentos Isolados (à direita).
Créditos: imagens obtidas com o filtro F555W de NGC 5882, arquivo do Hubble Space Telescope; NGC 6826 e NGC 7662, Balick et al. (1998); NGC 2440 López et al. (1998); restantes, adaptadas de uma série de artigos publicados por Corradi et al. entre 1997 e 2000, como resultado dos estudos do Grupo de Nebulosas Bipolares do Instituto de Astrofísica de Canárias. Estas foram obtidas em diferentes telescópios, e maioritariamente com a luz do oxigénio duas vezes ionizado ([OIII]) e do nitrogénio uma vez ionizado ([NII]).
Então, classificamos as micro estruturas como: i) nódulos ou filamentos em pares simétricos; ii) pares de jactos; iii) pares de estruturas similares a jactos; e iv) nódulos ou filamentos isolados. Os pares de nódulos ou filamentos e aqueles isolados, podem viajar com velocidades maiores ou iguais às velocidades do meio no qual estão inseridos. Em particular, a característica que diferencia os jactos das estruturas similares a jactos é o fato de que os pares de jactos expandem-se supersonicamente, ou seja com velocidades maiores do que aquela do meio. Ao contrário, os pares de estruturas similares a jactos deslocam-se com a mesma velocidade que o meio -ver Figura 7 onde se encontram exemplos de todas as classes de micro estruturas. Além de outros resultados que obtivemos deste estudo, e que estudaremos na próximo capítulo, demonstramos, que as micro estruturas aparecem indistintamente em todos as diferentes classes morfológicas das NP, o que sugere que os processos que culminam na formação das micro estruturas não estão, necessariamente, relacionados àqueles que dão origem às distintas morfologias das nebulosas
Figura 8 : Parte interna de NGC 6543. Aqui vemos uma imagem em nitrogénio uma vez ionizado das estruturas internas da nebulosa. O par de jactos é a estrutura mais externa da imagem, que está orientada na direcção Norte-Sul. Crédito: D.R. Gonçalves & R. Corradi (2002).
Analisando a parte central da nebulosa do Olho do Gato (NGC 6543) - vide Figuras 3 e 8 - vemos claramente que o par de jactos constitui uma entidade separada do núcleo da nebulosa. De facto, as micro estruturas das nebulosas planetárias habitualmente mostram-se como entidades bem diferenciadas do resto das componentes da nebulosa, não só do ponto de vista morfológico, mas também em termos da luz que emitem. As cascas e os halos brilham, principalmente, na linha de emissão do oxigénio duas vez ionizado ([OIII], verde e azul na Figura 3), enquanto que as micro estruturas são muito mais brilhantes na linha de emissão do nitrogénio uma vez ionizado ([NII], vermelho na Figura 3) e do oxigénio uma vez ionizado ([OII]). Devido a esta propriedade, as micro estruturas também são conhecidas como estruturas de baixa ionização (LIS, ver Figura 7a e 7b).
Conforme comentámos no capítulo anterior, todas as nebulosas planetárias com micro estruturas foram reunidas e, pela primeira vez, classificadas, num trabalho que publicámos recentemente Gonçalves et al. (2001). Nele considerámos tanto os aspectos morfológicos quanto os cinemáticos destas, em contraste com os mesmos aspectos observacionais das nebulosas hospedeiras. Além disto, e nisto reside o principal objectivo desta compilação de dados, contrastamos as previsões de todos os modelos teóricos propostos para a formação das estruturas de pequena escala em NP, com suas características observacionais.
Esta detalhada análise das micro estruturas permitiu-nos descartar claramente alguns dos mecanismos propostos para explicar a origem de diferentes tipos de LIS. Demonstrámos que tanto as velocidades observadas quanto a localização das estruturas isoladas podem ser razoavelmente bem explicadas por condensações originadas no vento lento - ou seja, prévias à compressão da nebulosa propriamente dita - ou por instabilidades locais.
Os modelos para a formação de jactos, propostos até então (interacção dos ventos estudados no cap. 2, com ou sem a inclusão de efeitos magnéticos, e considerando a estrela central única ou parte de um sistema binário) nem sempre são capazes de explicar algumas propriedades básicas dos jactos observados, como suas idades cinemáticas e o ângulo entre o jacto e os eixos de simetria da nebulosa planetária.
Verificámos, também, que os pares de estruturas similares a jactos, caracterizados por velocidades de expansão relativamente baixas (parecidas àquelas do meio no qual se encontram, ou seja, as cascas e os halos das nebulosas planetárias) não podem ser explicadas por nenhum dos modelos existentes.
Os nódulos que aparecem em pares simétricos e opostos, e com baixas velocidades, poderiam ser entendidos como resultando da sobrevivência de condensações (simétricas) formadas no vento lento (fase AGB da estrela central), ou como estruturas que antes tiveram altas velocidades, mas que foram sendo consideravelmente travadas pelo meio circundante.
Figura 9: NGC 7009, a Nebulosa de Saturno (Balick et al. 1998). Este é um protótipo de nebulosa planetária contendo pares de jactos. Note que esta NP está subdividida em muitas e diferentes estruturas: uma casca elíptica grosseira orientada na direcção leste-oeste; dois pares de nódulos, um interno e outro externo; e um par de jactos.
Mais recentemente (Gonçalves et al. 2003), finalizámos a análise das densidades, temperaturas, excitação e composição química de NGC 7009 - a Nebulosa de Saturno - cujos jactos representam o protótipo de pares de jactos em NP (ver Figura 9). Surpreendentemente, os nossos dados observacionais para os jactos e pares de nódulos desta nebulosa não confirmam as densidades, excitações e composições químicas previstas pelos modelos teóricos.
Estes são resultados robustos, e sua importância radica no facto de que nos dizem que não entendemos, em detalhe, nem mesmo as micro estruturas melhor estudadas. Talvez estejamos interpretando erroneamente a informação procedente dos dados observacionais (com respeito às suas formas, velocidades, graus de excitação, composições químicas, etc) ou, talvez, estejamos equivocando-nos quanto aos processos físicos que poderiam explicar sua formação. No entanto, dado que estes processos físicos são basicamente os mesmos que dão origem a outros tipos de jactos astrofísicos (àqueles dos objectos estelares jovens, os jactos extragalácticos, etc) e dado que o tipo de análise observacional que empregamos para as micro estruturas é aquele usualmente utilizado para as nebulosas planetárias, é óbvio que enfrentamos fenómenos bastante complexos. Enfim, compreender como se formam e evoluem as micro estruturas é muito relevante para o completo entendimento da evolução das estrelas similares ao Sol que - como veremos no último capítulo deste estudo - constituem quase a totalidade das estrelas.
Figura 10. Nebulosa planetária K 4-47. Imagem obtida com o Telescópio NOT (ver Corradi et al. 2000).
Conforme discutimos no capítulo anterior, o nosso estudo sobre as micro estruturas das nebulosas planetárias considera os aspectos morfológicos e cinemáticos (Gonçalves et al. 2001) e também aqueles que dizem respeito aos parâmetros físico-quimícos e de excitação (Gonçalves et al. 2003). No entanto ainda existem dúvidas importantes a respeito da época e dos mecanismos que resultam na formação das LIS. Nos últimos meses estivemos estudando os jactos de NGC 7009 (Figura 9) e de K 4-47 (Figura 10; Gonçalves et al. 2004). Da comparação entre as propriedades observadas nestas duas NP que contêm jactos -entre várias outras para as quais a análise completa continua em andamento- acreditamos que outros aspectos da sua origem, além daqueles estudados no capítulo "Jactos e outras micro estruturas", começam a perfilar-se.
O facto de que os jactos se deslocam com velocidades supersónicas (consideravelmente superiores àquelas do meio que os circunda) implica que a luz que emitem deve ser excitada por choques. De facto isto ocorre com os jactos de outros objectos astronómicos como os jactos extragalácticos, os quais são observados em quasares, rádio galáxias etc, e também nos jactos dos objectos estelares jovens, conhecidos como objectos Herbig-Haro. No caso das nebulosa planetárias, a principal fonte de energia não é a excitação por choques e sim a radiação oriunda da estrela central. Em outras palavras, quando dizemos que a luz oriunda dos jactos é excitada por choques, nos referimos ao facto de que esta tem origem, principalmente, na interacção de dois gases cuja velocidade relativa é supersónica. Por outro lado, quando a luz que observamos tem origem na interacção entre a radiação (nas NP, fotões energéticos da estrela central) com o gás que a rodeia, dizemos que esta emissão foi excitada por radiação, ou seja, luz fotoionizada. Esta é a razão da diferenciação, em termos de cores, das nebulosas simuladas por García-Segura & López (2000) na Figura 6b. Nesta Figura vê-se claramente que as micro estruturas devem emitir luz excitada por choques.
Neste aspecto reside a principal diferença entre os jactos e pares de nódulos de NGC 7009 e de K 4-47. Na primeira jactos e nódulos possuem emissão fotoionizada e, na segunda, estes são excitados por choques. Assim, pelo menos em princípio, os resultados observacionais de NGC 7009 contrariam os estudos teóricos, enquanto K 4-47 ratifica estes mesmos estudos. Como entender esta aparente contradição?
Numa revisão sobre micro estruturas em NP (Gonçalves 2003) sugerimos que a solução para este impasse possa estar relacionada com a fase de evolução (idade) destas nebulosas. Conforme visto anteriormente uma nebulosa planetária nasce da interacção dos ventos da estrela progenitora, AGB e pós-AGB. A partir da fase entre aquela na qual a estrela se encontra no Ramo Assimptótico das Gigantes e da nebulosa planetária propriamente dita -conhecida como Proto Nebulosa Planetária- e até que a nebulosa desapareça (dissolva-se no meio interestelar) passam-se mais ou menos 30.000 anos. No início da fase nebulosa planetária, quando parte das suas estruturas ainda não foram atingidas pelos fotões UV da estrela central, a probabilidade de observar estruturas essencialmente excitadas por choques é muito mais alta. Dado que as velocidades relativas entre os jactos e o meio circundante numa nebulosa planetária (tipicamente entre 50 e 150 km/s) nunca são tão altas como aquelas de jactos extragalácticos (entre poucos milhares de km/s e aproximadamente a velocidade da luz), os choques nas NP não são muito extremos, e por isto deixam de ser a principal fonte de excitação da emissão observada a partir do momento em são atingidos pela radiação da estrela central.
Esta ideia não é completamente nova, já que outros autores como Dopita (1997) e Miranda et al. (2000) também discutiram possível relação idade versus principal mecanismo de excitação. A novidade é que estamos comparando várias nebulosas com LIS numa tentativa de provar se esta relação realmente existe ou não. Além do facto de os jactos/nódulos de NGC 7009 e de K 4-47 serem opostos em termos de excitação, a primeira destas nebulosas parece ser mais evoluida do que a segunda (vide Gonçalves 2003). Enfim, há evidências de que os estudos teóricos estejam correctos ao predizer que jactos e nódulos de alta velocidade devem emitir luz excitada por choques, o que efectivamente se observa em nebulosas como K 4-47. Por outro lado, estes estudos não consideram a completa evolução das nebulosas com LIS, e por isto não incluem a acção da radiação da estrela central nas estruturas previamente excitadas por choques. Tudo indica que caso se considerasse estes dois tipos de excitação nos modelos teóricos, o resultado seria que nebulosas mais jovens teriam jactos essencialmente excitados por choques e que nebulosas mais evoluídas teriam jactos principalmente fotoionizados, como no caso de NGC 7009.
Somente muito recentemente, nos últimos 5 anos, este e outros aspectos básicos da origem e evolução das micro estruturas começaram a ser entendidos. Ou seja, conhecemos -relativamente bem- as principais características e mecanismos de formação e evolução das nebulosas planetárias. No entanto o nosso conhecimento sobre os detalhes destas belas criaturas -as micro estruturas- é ainda muito precário. Sabemos que 95% de todas as estrelas converter-se-ão em nebulosas planetárias, o que equivale a dizer nebulosas planetárias são o destino final da maioria das estrelas. Justifica-se, então, todo o esforço que vem sendo empregue em "descobrir" em detalhe os processos físicos "escondidos" nestas fabulosas estruturas.
Fonte: PORTAL DO ASTRÔNOMO - Portugal
Autoria:
Denise R. Gonçalves
Instituto de Astrofísica de Canárias - Tenerife, Espanha.